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Introduction

The ideal kind of implementation is dominant strategy, for

obvious reasons. A mechanism that implements an outcome in

dominant strategies will be much more credible since

dominant-strategy is a stronger solution concept than Nash

equilibrium, and because it is “prior free”; its construction will not

depend upon a particular set of information assumptions shared

among the agents.

We will solve an implementation problem in dominant strategies

to see how it can be done. The revelation principle still holds.

Thus we can reduce the question to one of direct revelation

games. We ask if truth-telling is a dominant strategy equilibrium.
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The Assignment Problem

Recall the transferable utility assignment problem. Every

individual announces his true preferences, and a linear program is

solved for which maximizes total surplus. The set of dual

solutions gives position prices. An optimal primal-dual pair (x , p)
has a market equilibrium interpretation: If individuals are charged

for their assignment according to p, then

I The individual assigned to position j and paying pj will not be

willing to pay pk for any other position k ;

I unmatched individuals receive 0 surplus;

I unmatched positions are priced at 0.
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Implementation of the Optimal Assignment

Correspondence

The optimal assignment problem maps each preference profile on

J positions for I individuals into the set of optimal assignments.

We would like to design a game for which truth-telling is a

dominant strategy.

A special case is the problem of assigning a single object to one

of a number of individuals. One game that solves the problem is

the second price auction: Everyone announces a valuation for the

object. The object is awarded to the bidder who announces the

highest valuation, and she pays the second highest valuation. We

have already seen that this is a market equilibrium for this

allocation problem, and that announcing one’s true valuation is a

dominant strategy equilibrium for this game. Can this result be

generalized to more than one object?
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Assigning a Single Object
Review

Suppose there is one object to be allocated to one of two

individuals. v11 = 2 and v21 = 1. The optimal solution is obvious:

Allocate the object to individual 1. The primal program is:

max 2x11 + 1x21

s. t. x11 ≤ 1,

x21 ≤ 1,

x11 + x21 ≤ 1,

x ≥ 0.

The solution is obvious; x11 = 1 and x21 = 0.
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The Dual
Review

The dual program is more interesting.

min s1 + s2 + q1

s. t. s1 + q1 ≥ 2,

s2 + q1 ≥ 1,

s1, s2, q1 ≥ 0.

To find the dual solutions, observe that

since the x21 constraint in the primal is

slack, the corresponding shadow price

s2 must equal 0. Thus q1 ≥ 1.

Solutions giving the value 2 are then

s1 = 2− q1, and the non-negativity

constraint on s1 implies that q1 ≤ 2.

So the set of solutions to the dual are

{(s1, s2, q1) : s1 = 2− q1, s2 = 0, 1 ≤
q1 ≤ 2}. This is the set of equilibrium

surpluses and object rents.

The second-price auction outcome, x11 = 1 and q1 = 1, is an

optimal primal-dual pair. What does this suggest?
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Direct Mechanisms

Suppose the following: A central administrator asks each individual i to

submit a vector of valuations ṽi = (ṽi1, . . . , ṽiJ) for the j positions. The

administrator computes an optimal allocation x̃ using the announced

valuations ṽi . He also computes a vector of position prices

q̃ = (q̃1, . . . , q̃J), one for each position, and charges the individual

assigned to position j q̃j . Individual i ’s utility from this procedure is then∑
j(vij − q̃j)x̃ij .

This describes a direct revelation mechanism. Each player i has for

actions vectors vi ∈ RJ, announced types. A strategy maps true types

into announced types. The payoff ui (ṽi , ṽ−i , vi ) to individual i of

announcing ṽi when others announce ṽ−i and his true type is vi , is∑
j(vij − q̃j)x̃j , where x̃ and q̃ are a position assignment and payments

to the center, computed by the center according to some allocation rule

for mapping announced types into assignments and some payment

function which maps announced types into transfers. Every such pair,

allocation rule and transfer functions, determines a game.
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Problem Formulation

Can an optimal assignment be realized as a DS equilibrium of a

direct revelation game?

The market equilibrium condition, that no one wants to switch

positions at the announced prices, is a necessary condition for

incentive compatibility, so one might look to the primal and dual

lps for a solution to this problem.

I In the single-object case the minimal dual price worked.

I In a multi-object game, the set of dual prices is a lattice, so

there is a coordinatewise-minimal dual price.

This is a conjecture!
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More Intuition

Denote by V (g) the value function for the primal problem when

there are g copies of the single object to allocate. The value

function V (g) is concave, and the dual prices comprise the set of

supergradients of V at the point g = 1. The highest dual price,

ṽ1, measures the welfare loss of decreasing the quantity available

of the object, while ṽ2, the lowest prices, measures the welfare

gain of increasing the quantity available of the object. If we could

imagine removing the object, not allocating it, the lost welfare

would be individual 1’s, ṽ1. If a second copy of the object is made

available, individual 1 is constrained to consume only 1, so the

additional object would go to individual 2, who values it at rate

ṽ2, and so the increase in announced welfare is ṽ2.
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The Case of Multiple Positions

Suppose now that there are sets I of individuals and J of objects.

We refer to both this problem and its value function by V (I,J ).

Consider the algorithm which chooses the coordinate-wise

minimum q and makes an optimal assignment based on the

announced valuations. Call this algorithm the minimal shadow

price mechanism.

Theorem. The minimal shadow-price mechanism is a truthful

direct mechanism in dominant strategies for implementing the

surplus-maximizing match.
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Proof

Following the intuition of slide 9, we will consider prerturbations

of V (I,J ) that add and subtract individuals and positions.

The proof has three steps. Let ι : I → J denote the optimal

match.

1. If individual i is assigned to position j in the program

V (I,J ), then there is an optimal match to the program

with one extra copy of position j in which she is also given

position j .

2. Using 1, show that if ι(i) = j , then

q
j
= V (I/{i},J )− V (I/{i},J /{j}).

This is the key step: q
j

does not depend on i ’s ṽi .

3. Using 2, prove the theorem.
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Proof of Step 3

Suppose that individuals 2 through N report vectors ṽi , and that

ι(1) = 1. If individual 1 reports his true vector of valuations v1,

person 1 pays

V (I/{1},J )−
∑
i 6=1
ṽi ,ι(i)

which does not depend on what 1 announces. His gain is

v11 −

V (I/{1},J )−∑
i 6=1
ṽi ,ι(i)

 = V (I,J )− V (I/{1},J ).

This last term, bidder 1s marginal product, is the value of

including individual 1 in the allocation process.
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Proof of Step 3

If 1 announces a ṽ1 6= v1, there will be a new optimal allocation κ

that maximizes
∑
i 6=1
∑
j ṽijxij +

∑
j ṽ1jx1j , and 1’s payoff becomes

∑
i 6=1
ṽiκ(i) + v1κ(1) − V (I/{1},J )

≤ max

∑
i 6=1

∑
j

ṽijxij +
∑
j

v1jx1j

− V (I/{1},J ).
= V (I,J )− V (I/{1},J ).

The idea that the payment does not depend upon 1’s

announcement is crucial here, as it is in the second-price auction.
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Proof of Step 2

Optimal solutions to dual problems are supergradients for the

primal value function. So for any y ∈ ∂V (I,J ) and position j ,

V (I,J ∪ {j}) ≤ V (I,J ) + yj .

Because the value function is piecewise linear, this holds for

equality for some supergradient q, and concavity also implies that

this must be the smallest magnitude directional derivative in the

direction j , which is q
j
.
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Proof of Step 2

Optimal solutions to dual problems are supergradients for the

primal value function. So for any y ∈ ∂V (I,J ) and position j ,

V (I,J ∪ {j}) ≤ V (I,J ) + yj .

Because the value function is piecewise linear, this holds for

equality for some supergradient q, and concavity also implies that

this must be the smallest magnitude directional derivative in the

direction j , which is q
j
.

This seems to use vector space reasoning, but we don’t have a vector space.

But we do! Represent any set S by the vector eS such that eSk = 1 if k ∈ S and

0 otherwise. Now V is defined on a vector space. A participation constraint

for person i is that
∑
j xij ≤

∑
k e
{i}
k , etc. Adding a bunch of f1 persons of type

1, f2 persons of type 2, etc.m just changes the participation constraint for i to∑
j xij ≤

∑
k e
{i}
k + fi . This is a linear change in constraints, and the usual rules

of differentiation apply.



Proof of Step 2

Assume that person 1 is optimally assigned to position 1. Then

from step 1, V (I,J ∪ {1}) = v11 + V (I/{1},J ). Therefore

q
1
= V (I,J ∪ {1})− V (I,J )
= (v11 + V (I/{1},J ))− (v11 + V (I/{1},J /{1}))
= V (I/{1},J )− V (I/{1},J /{1})
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Proof of Step 1

Call the problem with sets I and J the “old problem” and the

problem with sets I and J ∪ {1} the ”new problem”. The

hypothesis is that in the old problem 1 is assigned to 1, and the

claim is that the new problem has an optimal solution wherein 1

is assigned to 1.

In the new problem, if at least one of the two 1 positions is

empty, there is no cost to removing it, the old and new problems

are then the same, and so the old problem optimal solution also

solves the new.

So suppose the new problem has an optimal solution in which

both 1 positions are assigned, but neither to person 1.
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Proof of Step 1

We divide the individuals into three groups depending on their

assignment in the new problem. I0 is the set of people whose

assignment is the same in the old problem and in the new. Now

choose one of the individuals assigned to a position 1, say i1. He

left his old position, and it was assigned to i2. She left her old

position, and it was assigned to i3, etc. This chain ends in one of

two ways: Either it comes around to person 1, who gave up his

old position and it went to i1, or it reaches a position that in the

new problem’s optimal solution is not assigned. If we construct

two chains starting from the two individuals assigned to the two

position 1s, one will end the first way; call the group of people in

that chain I2. And call the group of people in the remaining

chain I3.
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Proof of Step 1

The value of the new solution is the sum of the values of each

groups assignments. The value of group I0 assignments is the

same in both problems because these assignments are unchanged.

Group I1 just swapped their old positions with each other.

The value of this group’s new assignments must equal the value

of their old assignments. If the new assignments for this group

have have higher total value than do the old assignments, then

the old assignment could not be optimal in the old problem.

Why? Group I1 has only swapped amongst themselves. Leaving

the old group I0 and I2 assignments unchanged in the old

problem, and giving I1 the new assignments creates a feasible

assignment for the old problem with higher value, contradicting

the optimality of the old solution for the old problem. A similar

argument shows that the new assignments cannot be optimal in

the new problem if the I1 value is lower.
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Proof of Step 1

To conclude the proof simply note that if one replaces the new I1
assignments with the old I1 assignments, this allocation is also

optimal. And, person 1 is in group I1.
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Dominant Strategy Equilibrium
Review

A strategy σ∗i for individual i is always optimal iff for all strategy

profiles σ−i , strategies σi , and type profiles v ,

ui
(
σ∗i (vi), σ−i(v−i , vi)

)
≥ ui

(
σi(vi), σ−i(v−i , vi)

)
.

It is dominant if, in addition, for every σi 6= σ∗i there is a type

profile v such that the preceding inequality is strict.

This is a “worst-case” analysis of sorts. A dominant strategy

requires that an individual do well no matter what the types. A

more relaxed Bayesian alternative would require doing well only on

average with respect to the common prior. Of course multiple

prior models allow us to imagine all kinds of in-between cases.
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TU Dominant Strategy Implementation

A social allocation problem is described by a group of I

individuals, and a set C of social choices. Each individual i is

described by a set Vi of types. Let V =
∏
i Vi . Each individual i ’s

preferences over social decisions is determined by her type, and

represented by a utility function ui(c , vi). Individuals have money

holdings too, that enter into utilities. In order to provide

incentives for efficient behavior, individuals may be required to pay

a tax or receive a subsidy. We assume that all individuals are

sufficiently wealthy to afford any transfers the central

administrator might impose. (Otherwise utility might not be

transferable.) Thus i ’s utility from the social choice c and holding

money ei when her type is vi , is Ui(c , ei , vi) = ui(c , vi) + ei .
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TU Dominant Strategy Implementation

The prescribed choices to implement are described by an

allocation rule:

An allocation rule is a function r : V → C that assigns a social

choice c to each vector v ∈ V of types.

Much of the mechanism design literature is concerned with

implementing efficient allocation rules.

An allocation rule r is efficient iff
∑
i ui
(
r(v), vi) ≥

∑
i ui(c , vi)

for all v ∈ V and c ∈ C .

Given transferable utility, this definition of efficiency is equivalent

to Pareto optimality of the social decision.
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TU Dominant Strategy Implementation

The prescribed choices to implement are described by an

allocation rule:

An allocation rule is a function r : V → C that assigns a social

choice c to each vector v ∈ V of types.

Much of the mechanism design literature is concerned with

implementing efficient allocation rules.

An allocation rule r is efficient iff
∑
i ui
(
r(v), vi) ≥

∑
i ui(c , vi)

for all v ∈ V and c ∈ C .

Given transferable utility, this definition of efficiency is equivalent

to Pareto optimality of the social decision.

Although most of mechanism design is about the implementation of efficient

decision rules, it need not be. (There is a literature on the characterization

of those properties of potential decision rules that make them implementable.

See Maskin TK.)



TU Dominant Strategy Implementation

In a direct mechanism individuals announce a type, ṽi . The

planner maps the announced type into an outcome; thus the

planner’s action can be described by an allocation rule r̃ . In order

to control individuals’ behaviors, taxes and subsidies may be

necessary. So in addition to announcing a social choice, the

planner also announces a tax or subsidy from or to each individual.

A transfer is a map t : V → RI, which describes how much an

individual needs to pay if the announced types are v . A transfer is

feasible if
∑
i ti(v) ≥ 0 for all v ∈ V . A direct mechanism is a pair

〈r̃ , t̃〉 where r̃ is an allocation rule and t̃ is a feasible transfer.
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TU Dominant Strategy Implementation

In a direct mechanism individuals announce a type, ṽi . The

planner maps the announced type into an outcome; thus the

planner’s action can be described by an allocation rule r̃ . In order

to control individuals’ behaviors, taxes and subsidies may be

necessary. So in addition to announcing a social choice, the

planner also announces a tax or subsidy from or to each individual.

A transfer is a map t : V → RI, which describes how much an

individual needs to pay if the announced types are v . A transfer is

feasible if
∑
i ti(v) ≥ 0 for all v ∈ V . A direct mechanism is a pair

〈r̃ , t̃〉 where r̃ is an allocation rule and t̃ is a feasible transfer.

There is also a literature on implementary without monetary transfers — for

example, school matching.



TU Dominant Strategy Implementation

A social choice rule r is implemented in always optimal

(dominant) strategies by the mechanism 〈M, r̂ , t̂〉 if for each i

there exists a function σi : Vi → Mi such that

I σi(vi) is an always optimal (dominant) strategy;

I for all v ∈ V , r̂ (σ(v)) = r(v).

A social choice rule that can be implemented by always optimal

strategies in some mechanism is incentive-compatible or

strategy-proof.

Mechanism is the key concept in

implementation theory and market

design. The concept was introduced by

Leo Hurwicz (1960) who later received

a Nobel prize for his work.
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TU Dominant Strategy Implementation

A social choice rule r is implemented in always optimal

(dominant) strategies by the mechanism 〈M, r̂ , t̂〉 if for each i

there exists a function σi : Vi → Mi such that

I σi(vi) is an always optimal (dominant) strategy;

I for all v ∈ V , r̂ (σ(v)) = r(v).

A social choice rule that can be implemented by always optimal

strategies in some mechanism is incentive-compatible or

strategy-proof.

Mechanism is the key concept in

implementation theory and market

design. The concept was introduced by

Leo Hurwicz (1960) who later received

a Nobel prize for his work.

“Optimality and informational efficiency in resource allocation processes”, in

Arrow, Karlin and Suppes (eds.), Mathematical Methods in the Social Sci-

ences. Stanford University Press. 1960. Also read: Hurwicz, L. “The design of

mechanisms for resource allocation”, American Economic Review 63 (1973),

Papers and Proceedings, 1–30.

The difference between always optimal and dominant is that if types are suffi-

ciently restricted, a particular type may never have an impact on the outcome.

In that case, the actions of such a type could never be dominant. When there

are enough types, this won’t happen.



TU Dominant Strategy Implementation

If a mechanism 〈M, r̂ , t̂〉 implements a social choice rule r with

dominant strategy profile σ, then there is a direct mechanism

with allocation rule r , 〈V , r , t〉 such that

I Truth-telling is a dominant strategy; and

I t(v) = t̂
(
σ(v)

)
for all v ∈ V .

Proof. If this were false, then for some individual i , type profile v ′

and announced type ṽi ,

Ũi(ṽi , v
′
−i , vi) > Ũi(v

′
i , v
′
−i , v

′
i )

that is

Û
(
σi(ṽi), σ−i(v

′
−i), v

′
i ) > Û

(
σi(v

′
i ), σ−i(v

′
−i), v

′
i ).

Thus the strategy which plays σ̂i(vi) = σi(vi) when vi 6= v ′i and

σ̂i(vi) = σi(ṽi) when vi = v
′
i performs better than does σi when

the type vector of is v ′; thus σi is not a dominant strategy.
25 / 28



VCG Mechanisms

A direct mechanism 〈r̃ , t̃〉 is a VCG mechanism iff

I r̃ is an efficient decision rule; that is, it maximizes∑
i vi(c , ṽi), and

I if for every i ∈ I there is a function τi : V−i → R such that

for all v ∈ V ,

t̃i(v) = τi(v−i)−
∑
j 6=i
vj
(
r̃(v), vj).
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Pivot Mechanism

The pivot mechanism is the VCG mechanism in which each

τi(v−i) ≡ maxc
∑
j 6=i uj(c , v−i). The idea behind the pivot

mechanism is that individual i pays his marginal contribution to

the social welfare of others: What they would have achieved

without him less what they achieve with him present. The

minimum-support-price mechanism is a pivot mechanism for the

assignment problem. Notice too that an individual who has no

effect on the allocation pays 0.
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VCG and Implementation

Theorem. VCG mechanisms are dominant-strategy incentive

compatible.

Proof. For any VCG mechanism,

Ũi(ṽi , ṽ−i , vi) =
∑
j

uj
(
r̃(ṽ), vi)− τi(ṽ−i).

The optimal strategy for individual i is to choose vi to maximize

social welfare given any v−i .

The converse is true to under some additional hypotheses, but it

is not easy to show.
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