Aerial Bombardment, Indiscriminate Violence, and Territorial Control in Unconventional Wars: Evidence from Vietnam*

Matthew Adam Kocher
Yale University
matthew.kocher@yale.edu

Thomas B. Pepinsky
Cornell University
tp253@cornell.edu

Stathis N. Kalyvas
Yale University
stathis.kalyvas@yale.edu

Paper prepared for presentation at the Annual Meeting of the American Political Science Association
Boston, MA
August 28 – 31, 2008

Comments are welcome. We thank Mr. Axel Pustan of Veterans for America for providing us with data on aerial bombing. Thanks also to seminar participants at the University of Chicago and Dartmouth College, and in particular to Jon Caverly, Holger Kern, Jason Lyall, Ed Miller, and Sarah Parkinson, for helpful comments and suggestions on earlier drafts. Thanks to Abraham Parrish and Stacey Maples of the Yale Map Collection for their assistance.
In her reflections on violence, Hannah Arendt (1970:56) famously remarked that “violence can destroy power; it is utterly incapable of creating it.” This is a powerful insight which clashes, however, with an equally powerful idea, namely that violence and repression “work.” In this paper, we use uniquely detailed data from Vietnam to try to adjudicate between these contradictory insights. More specifically, we focus on the phenomenon of “indiscriminate” violence against civilians in civil wars.

Indiscriminate violence, understood as the practice of targeting civilians on the basis of a collective attribute (Kalyvas 2006), is a common feature of many conflicts, especially insurgencies. For instance, collective punishment was a staple of counterinsurgency policy during the Second World War as the Nazis faced resistance movements in occupied countries. Serb forces used indiscriminate violence against Kosovar Albanians in 1999, while the Sudanese government’s counterinsurgent campaign in Darfur depends mainly upon large-scale attacks on unarmed civilians. In the Vietnam War, the United States and its allies deployed massive firepower in “free fire zones” where every individual was presumed to be an enemy. Even today, coalition forces have ramped up aerial bombardments as part of the “surge” strategy in Iraq, and the United States military continues to stress the vital role of aerial operations as a component of counterinsurgency doctrine (Cordesman 2008; United States Department of the Army 2006: E1). Indiscriminate violence is repugnant to observers and victims alike, but its very existence is testament to the belief that it can be an effective tool of counterinsurgency.

Recent studies of mass violence and similar phenomena focus on their determinants (Downes 2006; Humphreys and Weinstein 2006; Valentino et al. 2004). The literature on the consequences of these strategies is much less developed. Reviewing a vast body of literature on civil wars, Kalyvas (2006:146-172) argues that even though indiscriminate violence is frequently counterproductive, it may be successful under some conditions—a conclusion also reached by Downes (2007). Nevertheless, much of what we know is subject to a problem of aggregation. “Success” is typically defined as victory or defeat in war, but many factors beyond the treatment of civilians influence war outcomes. Indiscriminate
violence may cripple insurgent movements that emerge victorious in the long run. Alternatively, indiscriminate state violence may push civilians to ally with insurgents, but other factors may hamper insurgent movements as a whole. Politics is often held to explain such discontinuities between the local results of indiscriminate violence and the final outcomes of wars: Merom (2003) argues that indiscriminate violence is effective, but that democracies find it unacceptable, while Arreguín-Toft (2001) argues that indiscriminate violence cripples insurgencies, but is unpalatable to local elites. Even looking at subnational data might not be sufficient to tease apart the relationship between indiscriminate violence and the success of counterinsurgency campaigns, for strategies of violence are endogenous to the results of previous strategies. Indeed, indiscriminate violence may signal the failure of counterinsurgency, rather than causing it.

The aggregation problem suggests a need for systematic research on the effects of indiscriminate violence in local contexts, while the risk of endogeneity makes the task of untangling causal relationships a key concern. Our paper begins with the insight that within insurgencies, indiscriminate violence is unevenly distributed across time and space, so that research on the violence itself may hold the key to testing its effectiveness. To this end, we assemble a new dataset on incumbent indiscriminate violence and insurgent territorial control during the Vietnam War, one of the largest insurgencies in modern history. We use detailed micro-data on the control of territory by either forces loyal to the Republic of Vietnam or the insurgency represented by the National Front for the Liberation of South Vietnam—the Viet Cong. We examine how patterns of control responded to aerial bombardment, a common form of indiscriminate violence, particularly in Vietnam. While much of the war’s aerial bombardment was directed at North Vietnam or at concentrations of communist forces operating in remote and relatively uninhabited countryside, bombing was also used extensively in heavily populated territory where a bitter struggle for population control played out between the incumbents and the Viet Cong.
Among studies of violence, our data are unparalleled in their coverage. We analyze over ten thousand hamlets, covering the entire territory of the Republic of Vietnam, and we have repeated measures of territorial control along with a rich set of important control variables. Moreover, our data on aerial bombing are remarkably precise. We know the location of virtually every payload of munitions dropped over the Republic of Vietnam between 1965 and 1975. Our data show that both bombing and control varied spatially and temporally throughout the war. Some hamlets were bombed scores or even hundreds of times over a few months; others were rarely or never bombed. The combination of scale, variation, and unsurpassed coverage makes Vietnam an ideal case to test the effects of indiscriminate violence.

We find that indiscriminate violence in the form of aerial bombing was wholly counter-productive as a counterinsurgency strategy in Vietnam. We find unambiguous evidence that higher frequencies of bombing correspond to higher levels of downstream territorial control by the Viet Cong. Recognizing that the relationship between bombing and insurgent control is complex, plagued by unobserved heterogeneity and endogeneity, we build our causal story through a variety of methods, employing instrumental variables and matching as supplements to our baseline statistical models. Consistent results from these methods show that aerial bombing resulted in increased Viet Cong control.

Our findings are the most rigorous evidence available that indiscriminate violence drives its victims to side against its perpetrators. They demonstrate just how much the success of counterinsurgency depends on the methods with which it is fought; tactics that run a high risk of victimizing civilians are likely to rebound against their users. Our findings also contribute a new within-country focus to the cross-national and macro-scale literature on the use of strategic bombing to achieve political goals (Pape 1996; Horowitz and Reiter 2001; Allen 2007). The local effects of bombing are poorly understood in this literature, yet they play a central role in the literature’s causal claims. Methodologically, our paper illustrates the utility—and the challenges—of within-country research
strategies in studying violence in civil wars (Sambanis 2004; Kalyvas 2006). Case studies alone are insufficient, for insurgents and incumbents alike respond to changing conditions, and strategies of violence are both the product of previous developments and the causes of subsequent ones. Untangling the direction of causality is no easy task, but we show that careful attention to the logic of inference yields powerful findings.

We proceed as follows. We discuss the microfoundations of indiscriminate violence in the context of insurgency and underline the indeterminacy of the theoretical debate about its effects. We then discuss the data and proceed inductively, by identifying the determinants of aerial bombing in South Vietnam. We analyze the effects of bombing and conclude.

Insurgency and Indiscriminate Violence

War rarely fails to have some effect on civilians within the combatant states. Insurgency, however, implicates civilians more directly in the process of warfare than conventional forms of conflict.\(^1\) Descriptively, the key feature of insurgency is asymmetry: the state fields large, relatively well-equipped, regular military forces against a smaller force of less well-equipped rebels organized as irregulars. The rebels avoid large-scale and sustained confrontations due to the state’s material advantages; consequently battles, especially large-scale or decisive ones, are rare or absent, and front lines do not form. Insurgents attempt to organize and control the civilian population, mainly in the countryside, as a means to gradually build up forces sufficient to take over the state or detach a portion of the state’s territory. Civilians are exploited for manpower, tax revenue, and information security. Given their inability to draw insurgents into sustained combat, the state is forced to compete with insurgents for control over the population. The behavior of civilians is highly constrained in insurgencies. However, when zones of control are

\(^1\) The term “insurgency” refers to a cluster of ideas for which the terms “guerrilla warfare,” “asymmetric warfare,” and “unconventional warfare” are also sometimes used. Although there are some subtle differences between the extension and intension of these terms, for the purposes of this paper they may be treated as synonymous. Likewise, we use terms like “rebel” and “insurgent” interchangeably.
fragmentary or contested, or one side’s control is incomplete, civilians may have substantial scope for choice as to the extent of their collaboration with the dominant party locally (Wood 2005).

Violence against civilians is a central feature of such conflicts. In Kalyvas’s (2006) equilibrium framework, combatants use violence selectively in a process of competitive terror. Since indiscriminate violence punishes individuals regardless of their actions, it is strictly counterproductive, while selective violence (homicide targeted on the basis of individualized suspicion) furthers the goals of combatants. Nevertheless, state forces—and sometimes also insurgents—often commit face-to-face massacres, destroy the physical and ecological infrastructure that supports both life and livelihood, or kill on the basis of broad organizational, territorial, or identity profiles. A common form of indiscriminate violence is the intentional use of “cheap” military technologies like artillery, car bombs, or aerial bombardment that are difficult to use in ways that discriminate effectively between combatants and noncombatants.

Table 1 provides an initial picture of the prevalence of mass civilian slaughter since the Second World War. Using data from Valentino et al. (2004), it tabulates the presence of indiscriminate violence (termed “mass killings”) by the type of civil war being fought. For our purposes, guerilla wars are nearly equivalent to insurgent wars. Fully one third of such wars produced mass killings, and Fisher’s exact test rejects the null of no association between guerrilla wars and mass killings at the $p < .001$ level.

-- Table 1 about here --

The data suggest that the indiscriminate killing of civilians is a common feature of warfare in insurgencies. Yet there remains no consensus as to whether the tactics of indiscriminate violence accomplish their central goal of crushing insurgencies. Kalyvas (2006: 167) cites a large number of studies that point to the futility of such tactics, but he admits that “[T]he conjecture that indiscriminate violence is counterproductive is not based on systematic research.”

Several types of microfoundations support the intuition that indiscriminate violence does not pay for its users. First, violence can provoke rage and hatred toward the perpetrators, which can act as
powerful emotional motivators for revenge. According to this logic, killing more people creates more enemies for the perpetrator. Rubin (New York Times Magazine, February 24, 2008) shows nicely how this process has played out in the Korengal Valley of contemporary Afghanistan:

In the predawn light Bone — the nickname for the B-1 bomber that seemed to be the soldiers’ favorite — winged in and dropped two 2,000-pound bombs above the village. Finally, around dawn, a weary [Capt. Dan] Kearney, succumbing to gallows humor, adrenaline and exhaustion, said: “O.K., I’ve done my killing for the week. I’m ready to go home….” Kearney estimated that they killed about 20 people, adding: “I’m not gonna lie. Some are probably civilians….” Killing women and children was tragedy enough. But civilian casualties are also a political issue. If he didn’t manage to explain his actions to the Yaka China villagers and get them to understand his intentions, he could lose them to the enemy.

Second, such emotions may be intensified by a sense of injustice: death may not be what militants and collaborators deserve, but it is a risk they are thought willingly to entertain. Innocent civilians killed in air strikes or massacres die in spite of their decision not to participate, adding the insult of injustice to the injury of violence. Third, when participants in violent collective action are the only or the principal victims, violence acts as a deterrent to militancy. Individuals may calculate that non-participation increases their chances of survival, exacerbating the “rebel’s dilemma” by intensifying their collective action problem (Lichbach 1995). Violence that is truly indiscriminate, in the sense that the probability of victimization for participants and non-participants is equal, should increase participation by shifting its payoff vis-à-vis non-participation. Even when actors want to use violence with discrimination, perverse selection mechanisms can generate a high proportion of innocent victims; in fact, noncombatants may be victimized disproportionately because they are easier than insurgents to find and kill. At the extreme, if militant survival prospects are better than those of civilians, indiscriminate violence has the potential to endogenously reinforce individual participation in insurgencies (Kalyvas and Kocher 2007).

While these arguments are powerful, compelling logics and some important evidence point in the opposite direction. First, civilians living in rebel-controlled areas may reduce their risk by persuading the militants to decrease provocative behavior or to leave the area entirely. At an extreme, civilians may use
alternative forms of solidarity to fight the insurgents. These mechanisms have been used to justify or rationalize strategic bombing or blockade as tools of coercion in international politics (see Pape 1996 for discussions and a critique). If they hold in those settings, there is reason to suppose they might work in contexts of insurgency.

Second, if civilians are fully rational and entirely self-regarding actors, then there is no reason to suppose that indiscriminate violence by one side will induce them to prefer the other side. Instead, civilians should choose the side with the best expected payoff, which could very well be the more violent party. Guatemala’s civil war appears to have followed something like this process in the late 1970s and the early 1980s (Stoll 1993, 1999). Massacres of entire villages induced the men of other nearby villages to join “civil patrols” that cooperated with the military against the communist EGP (*Ejército Guerrillero de los Pobres* or Guerrilla Army of the Poor). In many less dramatic cases, civilians have fled from areas in which the state used a great deal of indiscriminate violence, but rather than seeking shelter with the guerrillas (who could not, in any case, support them), they have taken refuge in government zones. Emotional mechanisms or intuitions of justice may rationalize or even motivate these behaviors as well: civilians have been known to blame the opposition for provoking violence carried out by the state (Cole 2001).

Third, microfoundations are rarely the entire causal story. Microfoundational mechanisms are situated within meso- or macro-level processes that determine when and how the micro is activated (Derluguian 2005). The larger strategic context of insurgent warfare is one such example. While the Viet Cong relied upon classic insurgent techniques locally, they also created highly-trained and reasonably well-equipped company- and battalion-strength units that could support local guerrillas in defending their territory or launch powerful attacks against government forces. American commanders believed that unless they could defeat these large units, or at least substantially reduce the threat they posed, then small government units in the villages would risk being overrun. Once the battalions were blunted in large-scale combat, counterinsurgency could proceed on a solid foundation of macro-level military strength.
The use of airpower was an essential element of this battle doctrine, even though it had the potential to kill many civilians in the process.\footnote{One possibility is that aerial bombardment creates more insurgents than it kills \textit{when bombs fall on civilians}. If aerial bombardment also kills large numbers of fighters in battle and few enough civilian areas were bombed, then indiscriminate violence (in essence, a high rate of error) could be counterproductive locally but productive globally.}

Fourth, a good deal of evidence shows that state forces have routinely used indiscriminate violence against civilians for many years. For instance, Valentino, et al, (2004) find that insurgency is a key predictor of mass killing, as counterinsurgents attempt to “drain the sea” of civilian support that sustains insurgencies. Similarly, Downes (forthcoming) finds that “wars of attrition,” that is, long-running and costly conflicts, tend to be associated with high levels of civilian victimization in war. Assuming that military establishments learn from other military establishments, it is difficult to understand why so many states have relied on collective targeting if it does not advance their military goals. Moreover, some important cases would imply that militaries have failed to learn even from their own experiences. For instance, as we show below, the U.S. continued to use heavy bombing in populated areas after many years of experience in Vietnam. If indiscriminate violence is counterproductive, why is it so widely used?

Fifth, the most rigorous study of this problem to date, which uses an innovative quasi-experimental research design to examine the consequences of Russian artillery barrages on the violence of insurgents in Chechnya, finds that fewer insurgent attacks were carried out in villages that were shelled than in matched villages that were not shelled (Lyall 2007).

In sum, there is no well-supported consensus in the literature as to the effect that indiscriminate violence has on civilian behavior in insurgencies. The principal obstacle to studying this phenomenon is the difficulty of obtaining high-quality, systematic data on both the putative cause and the outcome. For most cases, we have neither. For a few cases, we have one but not the other. The Vietnam War may be the only historical case for which reasonable measures of both were constructed at the time and are no longer regarded as state secrets.
The Data and its Context

Although the war in South Vietnam was fought in a variety of ways, it was at its core a classic insurgency. It pitted the incumbent forces of the Republic of Vietnam (RVN) and the United States, along with several allies (the incumbents), against a large and amorphous insurgent organization (the Viet Cong) supported directly by the Democratic Republic of Vietnam (North Vietnam). Like other insurgencies, the war featured dramatic asymmetries in firepower between the incumbents and the Viet Cong. Moreover, indiscriminate violence by the incumbents was a hallmark of the conflict, including massive aerial bombings throughout Indochina.

The air war in South Vietnam is frequently ignored by military historians and political scientists, perhaps owing to the greater political emphasis on strategic bombing of North Vietnam under the Johnson and Nixon administrations, even though “[m]ost of these [air] operations were directed at targets within South Vietnam and along the Ho Chi Minh Trail in Laos, not, as commonly believed, at North Vietnam” (Thayer 1985: 79). As measured by weight, as of 1969 South Vietnam was already one of the most heavily bombed countries in history (FitzGerald 1989:470); from 1965 to 1967, South Vietnam was bombed twice as heavily as the North (McNamara 1995:243). According to Littauer and Uphoff’s (1972) wartime estimates (which were based on the Pentagon’s own data), 62% of the aerial munitions tonnage dropped in all of Indochina from 1965 – 1971 fell on South Vietnam. Schlight (1994) estimates that over the course of the war, fully seventy-five percent of all aerial missions flown over Indochina were flown over South Vietnam. Indeed, among American military planners the use of aerial firepower was an integral part of counterinsurgency warfare (United States Air Force 1967).

The effect of bombing on the civilian population of Vietnam and the intentions behind it were enormously controversial subjects during the war, and they remain key objects of historical polemics to this day. A simple account is elusive. As with much of the U.S. military’s tactical approach to counterinsurgency in Vietnam, practices varied among commanders and evolved over time in response to
experience. Indeed, Drew (1998) shows that the U. S. Air Force made virtually no serious attempt to develop a counterinsurgency doctrine until the conflict in Vietnam had been in progress for several years. Yet in spite of this lack of a clear doctrine, the use of airpower in Vietnam was lavish: “air forces” accounted for as much 47% of the combined annual military budget of the U.S. and South Vietnam (Thayer 1985: 25; he gives this figure for fiscal year 1969).

A number of memoirs and histories of the war argue that the indiscriminate bombing of civilians was a systematic and intentional component of U.S. counterinsurgency strategy, designed to terrorize Vietnamese civilian out of collaboration with the Viet Cong (Fitzgerald 1989; Gibson 1986). Since the war, no direct and unambiguous evidence has come to light that supports this conclusion for South Vietnam as a whole, though some units may have practiced terror bombing or shelling unofficially. Some fairly direct evidence supports this conclusion, as for instance the text of a leaflet that was dropped in some areas of the South as part of the U.S. military’s psychological operations:

When the plane returns to sow death, you will have no more time to choose. Be sure to follow the example of 70,000 compatriots who have used the free-movement pass to return and re-establish a comfortable life in peace; or stay and die in suffering and horrible danger. All who stay will never be able to know when other bombs will fall [emphasis added]. Be sure to be wise and don’t be undecided any more… (Littauer and Uphoff 1972: 60).

Additional anecdotal evidence suggests that many commanders welcomed the bombing of civilians for its effects even if they could not directly order it. Writes R.W. Apple (1971), “An army general explained the idea to me as follows: ‘You've got to dry up the sea the guerrillas swim in—that's the peasants and the best way to do that is to blast the hell out of their villages so they'll come into our refugee camps. No villages, no guerrillas: simple.’” General William Westmoreland, as head of U.S. Military Assistance Command, Vietnam, was famously unconcerned with the civilian causalities associated with the air war over South Vietnam, remarking that the air war “does deprive the enemy of
population, doesn’t it?” (Halberstam 1972: 550). In his notorious postwar memoir, former Secretary of Defense Robert McNamara acknowledged that aerial bombing in South Vietnam was almost entirely incapable of distinguishing supporters of the Viet Cong from opponents and neutrals (McNamara 1995: 243).³

U.S. Rules of Engagement (ROEs) promulgated during the war are consistent with the view that civilians were frequently bombed in spite of the absence of a specific command-level intent to systematically kill or terrorize them. According to a summary of the ROEs prepared as Congressional testimony, all U.S. airstrikes required the approval of the local South Vietnamese province chief or a higher official. In practice, multiple sources confirm that Vietnamese approval for airstrikes was easily obtained. Airstrikes carried out in the vicinity of populated hamlets had to be directed by a Forward Air Controller (FAC) or an alternative ground or air observer. Unless carried out “in conjunction with an immediate ground operation,” the inhabitants had to receive prior warning of the strike by loudspeaker or leaflet drop. The ROEs were relaxed for “Specified Strikes Zones,” the official military jargon for so-called “free-fire zones,” which were “where no friendly forces or populace existed” (Congressional Record 1984). In short, even direct aerial bombardment of populated places was not prohibited, though it was partially restricted.

How common was it? One indication is given by Thayer (1985: 130 – 132) who shows, using Pentagon data, that about 23% of the Vietnamese population lived within 3 kilometers of at least one airstrike in January of 1969. Although it is not possible to estimate civilian casualties from these figures, they must have been substantial. Race (1972: 233) comments on the ROEs, “Despite these rules, however, heavy civilian casualties still occurred” a conclusion echoed by Elliott (2003) and others. Given the technology of the times, a heavy civilian death toll followed directly from the choice to use airpower (and heavy artillery) in and adjacent to populated areas. Lewy (1978: 404) writes, “[U]ntil the perfection

³ In other words, McNamara asserts that air power was indiscriminate in precisely the sense we mean: it could not be reliably directed on the basis of individualized responsibility.
of the ‘smart bomb’ during the last stage of the Vietnam war, bombing was an inherently inaccurate process. Despite sophisticated computer equipment, the precision of the bombing was degraded by errors involving boresight, release mechanisms, bomb dispersion, aiming, and the computational system. Unknown winds at altitudes below the release point further complicated the pilots’ task. All this meant that, as one Navy pilot wrote in 1969, ‘it is impossible to hit a small target with bombs except by sheer luck.’**

Given the widespread violence unleashed through aerial bombing in South Vietnam, we use it to investigate the effect of indiscriminate violence on the fate of the Viet Cong insurgency. We assemble our data using two sources collected by the US Government as operational tools of warfare. The Hamlet Evaluation System (HES) was developed by analysts from the Office of the Assistant Secretary of Defense for Program Analysis and Evaluation, an agency of the Defense Department under Robert McNamara, and operated by a division of Military Assistance Command – Vietnam (MACV). Given the complex and shifting character of the battlefield in Vietnam, the HES was intended to provide a clear picture of incumbent and insurgent population control, ‘pacification’ in the argot of the Vietnam era, for the smallest population units: villages and hamlets.** MACV compiled a gazetteer of South Vietnamese hamlets, identified their geographic coordinates, and conducted a census. District Senior Advisors (DSA), typically Army officers ranking major or above, were assigned to complete detailed questionnaires, some on a monthly basis, others quarterly, for every village and hamlet in their zones of operation. The questions covered a broad range of topics, including local military presence and activity,

4 Lewy (1978: 451) accepts that U.S. airstrikes on North Vietnam probably killed 65,000 civilians, a figure he defends as low in comparison with other 20th century armed conflicts. Given that the South was much more heavily bombed than the North, and that, ironically, the ROEs for North Vietnam were more restrictive than those for the South, we can begin to appreciate the scope of the effect of airpower on South Vietnamese civilians, even if we cannot estimate it in any precise way.

5 In Vietnam, villages were bounded, surveyed territorial units that covered the entire land area of the country, while hamlets were clusters of settlement that could (and did) appear, disappear, or shift their locations within villages. For more detailed information on the HES, see Kocher (2004). The data are fully described in CORDS/RAD (1971).
political activity and administration, socioeconomic conditions, and the ethnic and religious makeup of the hamlet.

The questionnaires were subsequently resolved into a series of “level 1 models,” ordinal indices that were intended to capture specific dimensions of pacification. Level 1 models were combined into level 2 and higher models, eventually resulting in a single pacification rating that was widely distributed among the military and civilian leadership of the U.S. and South Vietnam. The procedures used to create these indices, which combined Bayesian updating with a simple additive schema, are fully described in Appendix B. While the use of indices can raise some red flags about what exactly is being measured, we believe this system was based on a fundamentally sound rationale: control in an insurgency is not directly observable, in large measure because insurgents are always at least partially clandestine. Recognizing these facts, as well as the difficulties of collecting data under wartime conditions, the designers of the HES opted for a measurement system that could aggregate a great deal of information, smoothing over error in the coding of individual questions.

To capture our dependent variable, local control, we rely on the “Enemy Military Model” (2A), which rates the presence and activity of Viet Cong military units in the vicinity of the hamlet on a five-point scale, the categories of which we have designated “strongly government controlled” (1), “moderately government controlled” (2), “contested” (3), “moderately insurgent controlled” (4) and “strongly insurgent controlled” (5). The texts of all question used in the construction of this index may be found in Appendix A, and a qualitative characterization of each ‘control zone,’ included as part of the

6 Another important thing to keep in mind about the HES is that it used many aggregated, village-level questions, in addition to hamlet-level questions, in the construction of hamlet-level indices. If a hamlet was located in a village that was reported to have a very strong Viet Cong presence, that information affected the assessment of the control status of the hamlet, irrespective of additional hamlet-level reports.
HES documentation, can be found in Appendix C. Implicit in our use of this index is the assumption that a continuous and active Viet Cong presence indicates their ability to control a hamlet.\(^7\)

The bombing data are derived from two systems that compiled records of post-flight pilot reports: the Combat Activities Asia file (CACTA) – active from October 1965 through December 1970 – and the Southeast Asia Database (SEADAB) – active from January 1970 through June 1975. The data were converted to a contemporary, platform-independent format by Management Support Technology Inc., of Fairfax, Virginia under contract to the Defense Security Cooperation Agency Humanitarian Assistance and Mine Action unit (DSCA-HAMA) US Department of Defense. Included in the database are: the number of aircraft involved in each sortie, the type and number of munitions dropped, the date and geographic coordinates of the attack. Our data include only strikes by fixed-wing aircraft; helicopter sorties, which were extremely common in Vietnam, are not included.

We mapped bombing sorties onto hamlets over the full territory of the country using GIS. Map 1 illustrates visually the procedure we used (the underlying base map is of Dinh Tuong Province in the Mekong Delta region of South Vietnam). The large circles represent search radii of 2 kilometers around the coordinates of hamlet centers; to make the map more visually tractable, we show only Viet Cong-controlled hamlets. The triangles are bombing sorties, in this case all sorties that fell in this area during July of 1969. We used this procedure over the entire territory of the RVN to create a variable that counts the number of sorties that fell within the search radius of each hamlet; we also generate a binary variable for each hamlet that indicates simply whether the hamlet was bombed or not.\(^8\) As we can see from the map, many sorties could fall within the range of a single hamlet. In addition, a single sortie often fell

\(^7\) We repeated the analyses presented in this paper on three additional dependent variables: the “Enemy Military Activity” sub-model (1B), which is a component of index 2A, the “Enemy Political” model (2C), and a single question text (HQB1) that directly rates the “status of the enemy Infrastructure” on a five-point scale. The results are identical across the board. All of the individual questions texts used in these analyses are included in Appendix A; the results of these robustness checks are available from the authors upon request.

\(^8\) The procedure we used also recovers the distance, in meters, of each sortie from each hamlet center within the search radius. This continuous measure of bomb distance may be useful in future work.
within the search radius of several hamlets. The working database we created preserves this many-to-
many relationship structure.

Several important simplifications are built into this procedure. First, like all populated places,
Vietnamese hamlets varied in physical extension and shape, but none of this information can be easily
recovered from data or maps of the period. Second, we choose the two-kilometer search radius with the
intuition that bombs dropped near (but not on) a hamlet could strike residents walking to water sources,
working in the fields, or otherwise moving outside of the hamlet center. Also, given the “dumb” bombing
technology of the time, many bombs did not fall where they were intended to fall. At the same time, as
the search radius increases much beyond two kilometers, the number of hamlets struck by each sortie
begins to increase very rapidly, making the database intractably large. Third, bombing sorties varied
quite a bit in terms of their size and the destructive potential of the technology used. Individual B-52
strikes could run to many tons of explosives; A-4 attacks often involved only strafing with 20mm canon.9

We also control for several structural covariates that are likely to have been important cross-
sectional covariates of control in the Vietnam War. An indicator of local terrain variability was
constructed by measuring the standard deviation of an 8-cell raster neighborhood around the raster cell
that contains each hamlet. We control for the natural log of the distance of each hamlet to the closest
international border, including the Demilitarized Zone separating North from South Vietnam. We control
for the log of hamlet population, and in addition we use a development index constructed from ordinal
variables that measured the relative presence of televisions, radios, and motorized vehicles, high-value
items at the time that could visibly signal the wealth or poverty of a locality.10

We study a full cross-section of South Vietnam during a 6-month period from July through
December, 1969. This choice is driven both by data availability and empirical design rationales. First,

9 Note that a small number of sorties dropped leaflets or flares. These have been excluded from the analysis.

10 For further details on these variables, see Kocher 2004.
the version of the HES that went online in 1967 and operated until January, 1969, had a highly subjective and much less sophisticated coding schema than the HES70 system we use. In addition, it collected no information on independent variables of interest. Second, the data held by NARA are fragmentary, missing January, 1970 – June, 1971, as well as 34 of 44 South Vietnamese provinces for all of 1972. Third, the six months of 1971 that we do have access to cover a period with far less variation in control (most hamlets had shifted into government control), less over-time change in control status, and very little bombing in the vicinity of hamlets; in short, it lacks the variation we need for empirical leverage. By contrast, in 1969 control over rural South Vietnam was still sharply divided between the two sides. Counterinsurgency warfare appeared to be succeeding (Davidson 1988:610-612; Goodman 1970; Sorley 1999:154-160; Tran 1980:16-25). June and July of 1969 saw few Viet Cong-initiated attacks, and indeed little direct combat overall (Davidson 1988:597, 612-617; Duiker 302-307). An “Autumn Campaign” initiated by the Viet Cong in August of 1969 met with little success, and captured documents from the North Vietnamese Army’s Central Office for South Vietnam (COSVN) reveal frustration with the apparent success of rural pacification efforts by the US and RVN (COSVN 1969). Still, aerial bombardment of heavily populated areas remained prevalent as allied forces increased their operations in preparation for the draw-down of forces occasioned by Nixon’s “Vietnamization” policy (FitzGerald 1989: 508-511). Late 1969 is accordingly a propitious time frame to test whether or not aerial bombing decreased insurgent control, for this period witnessed a lull in the ground war and apparent counterinsurgency success, but still high levels of aerial bombardment.

The HES has been the object of intense criticism beginning during the war itself (see, e.g., (see Race 1972; Bole and Kobata 1975; Kolko 1985; Thayer 1985; Gibson 1986; Elliott 2003). One of the principal critiques of the data is that they reflect the partiality of the actors who developed them. The U.S. government, and especially the Department of Defense, had strong incentives to shape the data in ways that would justify (ex ante) and rationalize (ex post) its conduct of the war. In spite of these concerns, we have several reasons for confidence in the data. First, even if the Department of Defense
systematically inflated the number of hamlets falling under government control, we make no inferences regarding the aggregate fortunes of either party to the war. We examine only variation among cases that were coded in similar ways. This variation is substantial: many hamlets were coded as falling under partial or complete Viet Cong control for many months or years; many were regarded as stably and reliably controlled by the Vietnamese government; many shifted among control categories, in some cases several times in either direction. Second, the data on control and the data on bombing were not collected by the same agencies, so it would have been difficult to shape the two data sets to create a misleading picture from the intersection of the two. Finally, as we demonstrate, our results do not reflect well on the decision makers of the time. Not only did the US kill hundreds of thousands of South Vietnamese civilians with airstrikes, but it appears much of this bombing was done needlessly. To produce our findings, analysts would have had to overestimate the failure of their own efforts, and then only in the hamlets that they targeted for aerial bombing. A more specific objection is found in Elliott (2003: 858), who points out that the units of observations (the hamlets) are not constant over time; “[H]amlets were consolidated, split apart, and even eliminated from the survey—as seems to have happened in some cases where revolutionary control was deeply entrenched.” In fact, as Elliott himself acknowledges, hamlets did change their locations and many were abandoned or newly set-up, often in response to the fortunes of war; changes in the HES thus responded to real changes on the ground, though no doubt with only partial adequacy. Given that our interest is with changes over time in identical units, we restrict our analysis to a panel of hamlets that were coded on the dependent variable in all six months of the study period.\footnote{There is some case attrition due to missing values on one or more of the independent variables.}

\textbf{Determinants of Aerial Bombing}

We begin our analysis by exploring the determinants of bombing in South Vietnam inductively, using maps to illustrate the spatial variation of bombing. Maps 2 and 3 plot bombing sorties and
populated hamlets in the northern and southern parts, respectively, of South Vietnam.\footnote{Both the HES and the bombing data from SEADAB and CACTA recorded locations using the Military Grid Reference System (MGRS), a slightly modified version of the Universal Transverse Mercator projection system. For both datasets the datum is Indian 1960, based on the Everest Spheroid. Since Vietnam falls directly on the border of UTM zones 48 and 49, we re-projected the data into a non-standard Transverse Mercator projection, with a central meridian of 106.75°E.} Two things are immediately clear. First, bombing on a fairly massive scale was carried out in every region of South Vietnam. Second, and contrary to what some historians of the war have maintained, bombing was used massively in areas that were heavily populated. For instance, over the second half of 1969, four years after the entry of U.S. ground forces into the war in Vietnam and following a full decade of advisory and combat experience against the Vietnamese communists, fully 30\% of all the country’s hamlets were bombed at least once. During the same period, 18.65\% of all recorded bombing sorties were targeted to within two kilometers of a hamlet. Some populated areas were spared during this period, like the far northern coastal region, but most Vietnamese civilians had very intimate experience with aerial bombardment.

Map 4 moves us in for a much closer look at a single province, Dinh Tuong, in the northern Mekong Delta to the southeast of the capital. The underlying base map is from a series produced by the South Vietnamese government in 1970; it reflects 2nd and 3rd level administrative boundaries and other features as they were found in the late 1960s. This map plots bombing sorties, as well as hamlets by their control status in July 1969. At this point in the war, no hamlets in Dinh Tuong were regarded as fully controlled by the government. We can see from the maps that both control and bombing were highly clustered. For instance, the hamlets immediately surrounding the capital, My Tho, in the southeastern part of the province are all controlled by the government. Likewise, the district capitals are clusters of green dots. Aerial bombardments were directed overwhelmingly at areas with clusters of (red) strongly insurgent controlled hamlets. Contested (light green) and moderately insurgent controlled (pink) hamlets generally did not have bombing directly in their vicinity, though some are adjacent to areas of heavy
bombardment. It is easy to see that a strip with little bombardment runs right through the center of the province, following the route of Highway 4, one of the principal motorways of South Vietnam.

The even closer look provided in Map 5 shows that, for the most part, hamlets were not directly bombarded. Rather, local roads and especially canals in the immediate vicinity of insurgent controlled hamlets were the targets. According to Elliott (2003), who worked in the area during this period and later reconstructed its history from Vietnamese-language local sources, the canals supported trees and undergrowth that was used to conceal Viet Cong bunkers and strong points from which the guerrillas operated. It appears that these were often the targets of aerial bombardment, but consequently bombs often fell quite close to populated hamlets. In an interview, Gen. George Brown, the 7th Air Force commander in Vietnam described the tactical approach as follows: “The enemy today stays in his bunkers and he’s hard to locate. Even ground units sometimes move so fast that they ‘go right over’ him, that is, they miss him when he’s underground. Getting at the enemy requires both an air and ground effort. The Army operations now are reconnaissance operations. If they make contact, they call on air. If it looks like the enemy is definitely there and dug in, they’ll move in after the airstrike. The result has been reduction in U.S. casualties which is of great importance. We are often accused of wasting airpower, particular on suspected enemy locations. A lot of these suspected enemy targets that we’re called upon to hit flush the enemy out, keep him off balance, and let the Army go after him aggressively” (quoted in Sams, et al, n.d.).

Table 2 shows the relationship between control status and bombing for the six months from July – December 1969. It shows that about 9% of the hamlet observations had bombing sorties within two kilometers during this period. Insurgent controlled hamlets were vastly more likely to be bombed than either contested or government controlled hamlets. In fact, a hamlet in strong insurgent control was over

13 In this case, the unit of analysis is the hamlet/month. On average less than half of the hamlets bombed in a given month were bombed again in the subsequent month, while between 5 and 7% of hamlets not bombed in a month were bombed in the following month. Thus, 10% understates the percentage of hamlets that were bombed at least once over this six month period. That figure, given previously, is 30%.
thirteen times more likely to be bombed in a given month than a hamlet in strong government control. Even among partially insurgent controlled hamlets, far fewer (about 1/3 as many) were bombed than among fully insurgent controlled hamlets.

-- Table 2 about here --

These results broadly support the conclusions Thayer (1985: 133) drew from a much smaller dataset: U.S. bombing of populated hamlets fell disproportionately on Viet Cong strongholds. These results are confirmed by Kalyvas and Kocher (2008) in parametric models with key control variables included. They reflect the peculiar structure of unconventional war, in which indiscriminate violence tends to occur in strongholds of one side or the other, rather than in the most contested zones of the battlefield, as in conventional conflicts.

Effects of bombing

The analysis in the previous section establishes that U.S. forces bombed in the environs of insurgent-controlled hamlets much more frequently than they did in incumbent-controlled areas. This creates a serious problem for any attempt to evaluate the *effects* of bombing (or any other form of indiscriminate violence): how do we distinguish between locales that were bombed because they were controlled by the insurgents and locales that became insurgent-controlled because they were bombed? Ideally, we would begin with a random selection of bomb targets and compare the posterior control status of those cases with the unbombed control group. But, as we have seen, bombing was far from random in the Vietnam War: it systematically targeted places where the Viet Cong was powerful.

Table 3 shows the results of a simple tabulation of control status and bombing. The five major columns of the table represent control categories in July of 1969. For instance, the first column contains only hamlets that were rated as fully controlled by the government in July, the second column contains only observations that were partially controlled by the government in July, and so forth. Within each
column, we cross-tabulated bombing with control status in the same hamlets six months later, in
December of 1969. In this way, we can examine the downstream consequences of bombing while
holding constant a prior measurement of control. We have bolded two cells within each major column;
all of the observations in these cells have the same control value in December that they had in July. The
diagonal formed by these bolded cells show that a majority (about 58%) of Vietnamese hamlets fell into
the same control category in December of 1969 that they occupied six months earlier. Given that it was a
long war, fought between a skilled and tenacious insurgent organization and a superpower, this degree of
stasis should not surprise us.

-- Table 3 about here --

In all five of the major columns, hamlets that were bombed in July were more likely to move
toward insurgent control, and correspondingly less likely to move toward incumbent control, by
December than hamlets that were not bombed in July. Consider, for instance, hamlets that were coded as
being “contested” in July 1969. Within this group, nearly 29% of the non-bombed hamlets were rated as
under moderate or high government control six months later, while about 16% of the bombed hamlets
were similarly rated by December. For the same group, 35.5% of the bombed hamlets moved into one of
the two insurgent-controlled categories, while only about 15.5% of the non-bombed hamlets did the same.
Among hamlets that were strongly controlled by the insurgents in July, nearly 75% of the bombed
hamlets remained in the same category, while over 48% of the non-bombed hamlets moved at least one
category in the direction of government control.

This evidence establishes that bombing is strongly associated with a downstream failure of
counterinsurgency, but it is possible that rather than causing the resulting distribution of control, bombing
instead acts as an indicator for otherwise unobserved sources of insurgent strength or incumbent weakness
in July which led to gains in control for the insurgents. Put differently, bombing signals that the
incumbents are in a tough fight, either because they are pushing aggressively into rebel-held territory or
because the insurgents are seeking to expand their own zones of control. Still, this only damages our results if tougher fights systematically favored the insurgents, and equally in areas where the incumbents were defending places they already controlled. This also would require that incumbents were comparatively successful in expanding their control and defending previous gains in precisely those places where they did not fight hard (per hypothesis, in the areas where there was less bombing). This is especially puzzling for hamlets that were in strong insurgent control in July 1969 but moved toward government control by December. Another possibility is that the incumbents used alternative counterinsurgency strategies in places that appeared to them propitious for expansion of their zones of control, while they used bombing to “hold the line” elsewhere. An implication is that these areas would have been worse for the incumbents (i.e. more of them would have moved further into insurgent control) than they were in the absence of bombing.

One way to check both possibilities is to hold constant not only the prior level of control for each hamlet, but also the prior level of control in regions around each hamlet. The rationale is that the propensity of a hamlet to change its control status in the future depends in part on the relative strength of insurgents or incumbents nearby. Our assumption is that the level of a party’s regional strength should be reflected in its control over nearby hamlets. If both bombing in July and control in December is a function of regional strength that is not yet reflected in local control, then holding regional strength constant should weaken or eliminate the apparent association between bombing and downstream control.

To simultaneously hold constant regional strength and local control, we use the average of the control variable within districts in July. The first column of Table 4 recapitulates the results of the contingency table analysis in the form of an ordered logit. Positive coefficients indicate increased insurgent control. As expected, bombing in July is a statistically significant predictor of control status in December, holding constant the previous level of control. The second column introduces the district-level average control status in July. Both are extremely powerful predictors of control six months later, confirming the intuition that regional control reflects the capacity to influence local control over time. The
coefficient for bombing is slightly reduced, but it remains a significant predictor of downstream rebel control and counterinsurgent weakness. The third column introduces several structural control variables. Unsurprisingly, development level, distance to international boundaries, and rough terrain are all statistically significant predictors of control status 6 months later. The coefficient for bombing falls very slightly, but remains significant.

-- Table 4 about here --

Table 5, generated using Tomz (2003), gives the predicted differences in the probability that a hamlet in the 80th percentile of bombing sorties versus a hamlet in the 20th percentile for bombing sorties fell into each one of the control categories in December, conditional on its control status in July (the probabilities are derived from Model 4B). Negative differences are shaded, while statistical significance is indicated in bold. The overall pattern is about what we should expect to see if bombing made it tougher for the incumbents to gain control of hamlets. The negative sign of the first differences on the upper-right hand side of the matrix tell us that bombed hamlets were more likely to move out of government control that unbombed hamlets, while the positive signs on the lower-right hand side of the matrix reflect that bombed hamlets were more likely that unbombed hamlets to move into insurgent control 6 months downstream. Only two of twenty-five cells do not fit the expected pattern, which is most likely accounted for by the especially large change in the expected direction in the categories below them.

-- Table 5 about here --

Testing for causality: instrumental variables and genetic matching

Despite the strength of the evidence that U.S. aerial bombardment favored Viet Cong control, we must still worry that our initial findings reflect more complex dynamics of violence. On one hand, developments in Viet Cong tactics reflect the mechanisms that we expect to be at play. The failure of the Autumn Campaign prompted COSVN to recommend fewer attacks against US or ARVN installations, and renewed guerilla tactics and agitation to gain control of local territory (COSVN 1969; Davidson
1988:599-601). But on the other hand, it is possible that an unobserved factor or factors both increased
the frequency with which some hamlets were bombed and facilitated Viet Cong control in those same
hamlets. Likewise, it is possible that bombing increased in places where the incumbents anticipated a
future upsurge in insurgent control. In either case, it would be incorrect to attribute the changes in control
status in the hamlets that experienced aerial bombing to the bombing itself.

We employ two techniques to tackle these problems: instrumental variables and matching. Both
confront the inferential problems that arise when observational data are used to derive causal inferences,
but in different ways. Consistent results using both methods will indicate that neither endogeneity nor
unobserved variables drive our results.
Strategy One: Instrumental Variables

Our first strategy exploits the temporal dimension of our data to untangle the direction of causality between aerial bombing and insurgent control. We have shown that aerial bombing is anything but random, and we can use this very fact to identify its effects on insurgent control. We use past values of insurgent control as instruments for bombing, and then study the effect of bombing on downstream insurgent control. Since we have monthly data on insurgent control between July and December 1969, we use insurgent control in July and August as instruments for bombing in September, and we investigate the effect of bombing in September on insurgent control in December. Using lags of dependent variables as instruments for endogenous covariates is common in labor and housing economics (see e.g. Poterba 1991; see also Greene 2000: 375). Our methodology is roughly akin to a generalized method-of-moments (GMM) estimator (Hansen 1982), although our model is a simple cross-section. We employ GMM on our entire panel as a robustness test below.

In order to untangle the direction of causality in this fashion, our instruments must satisfy two requirements: excludability and relevance. First, to be valid, our instruments must be “excludable,” meaning that they are conditionally independent from the error term in the (unobserved) true regression. In our application, this means that there is no unobserved relationship between insurgent control in July and August 1969 and insurgent control in December 1969. While there are certainly unobserved characteristics of individual hamlets that jointly determine insurgent control in these two months, we can use data on insurgent control in September 1969 as a control variable to correct for this possibility and recover conditional independence. Because instrumental variables require only conditional independence between instruments and the error term, we need only assume that there are no unobserved hamlet-specific variables that affected insurgent control in July, August, and December 1969, but not in September of that year as well. Moreover, since we have two instruments and one endogenous variable, we are able to test the model’s overidentifying restrictions, and we do so below.
Second, to be relevant, our instruments must actually explain our endogenous variable—it must be the case that variation in insurgent control in July and August 1969 explains variation in aerial bombing in September 1969. We have shown above that this is likely to be the case, but we examine this question again in the context of our instrumental variables models in order to confirm that insurgent control is a relevant instrument for bombing. As we show below with a number of diagnostic tests, insurgent control in July and August is a highly relevant instrument for bombing in September.

We begin by examining the first stage relationship between our instruments and the endogenous variable, insurgent control. Table 6 contains the results from two models, the first a baseline model with no substantive controls, and the second including a series of hamlet- and village-level control variables.

The results are the first pieces of evidence that past insurgent control is a good instrument for aerial bombing in September of 1969. All four of the coefficients measuring this relationship are significant at the $p < .01$ level. Shea’s partial R^2, a common method to assess the explanatory power of the instruments, is low but sufficiently large given the sample size: F tests show the instruments are highly jointly significant. These are not formal tests of our instrument’s relevance, but they are encouraging first steps in demonstrating that, as we expect, past insurgent control is a good predictor of aerial bombing.

In Table 7, we present the second stage results from seven instrumental variables regressions. The first two models (Models 7A and 7B) are the second stages of the models in Table 6; the next three models include a binary indicator variable for bombing, break apart the measure of insurgent control in September (as above), and include an additional control for the average level of insurgent control at the district level. The sixth and seventh models (7F and 7G) investigate the effect of bombing on changes in insurgent control between September and December 1969. This is the strongest possible test of the

\[\text{In Model 6A, } F(2,10768) = 57.69. \text{ In Model 6B, } F(2,9653) = 40.89. \]

14
argument that bombing changes the degree of insurgent control, and also most closely mirrors the use of lagged dependent variables as instruments in labor and housing economics. In Model 7G, we make an additional change. We use the first differences in control from July to August and from August to September as our instruments, instead of the levels of control in these months, and we hold constant changes in control from September to October in the second stage. Recall that one worry we had about estimating the direction of causality involved the possibility that bombing was systematically directed against hamlets that were in the process of moving toward insurgent control. Were this the case, then bombing would reflect the anticipation of changes in control, rather than causing them. We take this possibility explicitly into account in Model 7G.

We find in all models that the effect of bombing on insurgent control is positive, and that this coefficient is very precisely estimated. These results mirror those from the ordered logistic regressions above, with the caveat that since we have modeled the dependent variable as a continuous rather than ordinal variable, coefficients have different substantive interpretations. Curiously, our ordinal index of insurgent control in September appears only weakly related to insurgent control in December. Model 7D shows that this is an effect of assuming a linear functional form, and Model 7F shows that insurgent control in September is a strong predictor of changes in control in December. Finally, Model 7G controls not only for prior levels of local control, but also for the prior changes in local control. Each model confirms that our results do not depend on how we model insurgent control or how we proxy the dependent variable of interest. Note also that the estimated effect of the prior change in insurgent control is insignificant. This suggests that conditional on bombing and other covariates, there is no secular trend towards insurgent control in our data.

While not the primary focus of this paper, coefficient estimates for several control variables are no longer significant. In particular, variables measuring village-level development and the log of hamlet
population appear only weakly related to insurgent control in these models. Previous work on these data has found strong evidence that development and hamlet population size affected local control; those results are consistent with robust macro-scale evidence that per capita GDP is associated with civil war onset and duration. This analysis undermines the micro-scale findings and suggests that we consider the macro-scale evidence with greater skepticism.

The diagnostics presented in the final four rows of Table 7 allow us to test some of the most important assumptions of our instrumental variables strategy. The LM statistic tests the hypothesis that our instruments predict bombing in September 1969. The high Chi-square test statistics for all of them allow us to reject confidently the null hypothesis that our model is not identified. The Wald F test statistic tests the joint significance of the two excluded instruments in predicting bombing in September to guard against “weak identification,” which occurs when instruments do not explain much variation in the endogenous covariate (Murray 2006). When instruments are weak, instrumental variables estimates are biased (Bound et al. 1995). We compare these statistics to the critical values identified by Stock and Yogo (2005) and find that all models well surpass conventional benchmarks, indicating that we are unlikely to suffer from bias due to weak instruments. Finally, we test the overidentifying restrictions of our two instruments using Hansen’s J test. Under the null, the instruments are valid (“excludable”); rejecting the null indicates that there is some subset of instruments that is correlated with the error term in the second stage regression. Our test statistics are small, and their p-values are far from conventional levels. Together, these specification tests demonstrate that we have identified instruments for bombing that are both excludable and relevant.

Finally, we recognize that our instrumental variables strategy is uncommon in political science, so we exploit the full panel to present a series of robustness tests specifically designed to correct for the unobserved hamlet-level factors that might impugn our cross-sectional instrumental variables identification strategy. We estimate fixed effects regressions, both with and without instrumental
variables, and dynamic panel data models. The dependent variable in all models is the change in insurgent control. The results appear in Table 8.

-- Table 8 about here --

Model 8A is a fixed effects model that controls for unobserved hamlet-level factors, and uses the lag of bombing to predict subsequent changes in control. Model 8B is an instrumental variables model that uses the lag of the difference between hamlet-level control scores and the village-level mean of insurgent control as an instrument for bombing in the current period. Both models confirm the results from the cross-sectional analysis: controlling for unobserved hamlet-level characteristics, bombing increased insurgent control. Models 8C-8E present results from dynamic panel data models. When lagged dependent variables appear on the right hand side of a panel data model, the lag of the dependent variable is correlated by construction with the fixed effects. Arellano and Bond (1991) propose a GMM estimator to correct for this problem—these models, which use lagged values of the dependent variable as instruments, were the inspiration for our cross-sectional identification strategy above. Model 8D explicitly models bombing as endogenous, and instruments with two-month lags of bombing and insurgent control. Model 8E adds the difference between the mean village control and hamlet-level control as an additional instrument. In all three dynamic models, bombing increases subsequent insurgent control—and the coefficient on the lagged dependent variable is now positive, as it should be. Unfortunately, common specification tests for the Arellano-Bond models are undefined given that the log of distance to an international border and rough terrain are constant across time. Still, we are less concerned with model specification here than with confirming that our estimates hold up to a variety of different estimators. Our results show that they do, even after explicitly controlling for the unobserved hamlet-level heterogeneity that would invalidate our cross-sectional instrumental variables strategy. Using instrumental variables to untangle the direction of causality, we find that aerial bombing increased Viet Cong control.
Strategy Two: Genetic Matching

Matching techniques facilitate the estimation of causal effects using observational data by choosing observations that will approximate the counterfactual quantities of interest. In our application, we wish to compare the level of insurgent control in hamlets that were bombed to the level of control in hamlets that were not bombed. Since we cannot randomly assign hamlets to be bombed, and since we cannot simultaneously observe the effect of bombing and not bombing in the same hamlet, we create a “control” group of hamlets that are as comparable as possible to the hamlets that were “treated” (i.e., bombed). We do this by using observed data about each hamlet to create a sample of hamlets that differ as little as possible aside from having been bombed or not. The literature glosses the measure of similarity among treatment and control hamlets as “distance.” We then evaluate the effects of bombing on insurgent control using this matched dataset. Importantly, using this procedure we sacrifice some precision, for we are only able to estimate the effect of a binary treatment (bombed or not) on insurgent control.

There is a lively debate about the proper techniques for matching, so best practices are difficult to determine. Yet we identify two key methodological suggestions. Ho et al. (2007) caution against “controlling for consequences”—including covariates in the matching or estimation procedures that are intermediate consequences of a treatment variable. Quite naturally, we will mask the effect of bombing in September on insurgent control in December if we control for insurgent control in November. We are careful to match (and estimate) only models where any covariate is not possibly a consequence of bombing in September. We therefore use data on hamlet population, village-level development, village-level insurgent control, district-level insurgent control, and hamlet-level insurgent control from June of 1969. Only distance to an international border and rough terrain are unaffected by bombing.

15 This is sometimes known as the “fundamental problem of causal inference” (Holland 1986).
We also check to see whether or not our matching procedure fares adequately in creating a truly balanced matched dataset. Diamond and Sekhon (2005) show that in most common applications, matching based on standard distance metrics (the two most prominent being propensity scores and Mahanalobis distance) can increase bias on some covariates rather than reducing it.\(^\text{16}\) They propose a genetic matching algorithm that searches across the space of all distance metrics to achieve balance. We examine balance statistics (available upon request) obtained by matching based on simple “nearest neighbor” propensity score methods as implemented in Ho et al. (2004), and find that balance worsens notably after matching for some covariates. Given this, we employ Diamond and Sekhon’s genetic matching procedure. Our results regarding the effect of bombing on insurgent control, however, are nearly identical when using nearest-neighbor matching techniques.

We first present the balance statistics obtained after running the genetic matching algorithm (Table 9). The goal of matching is to minimize the differences between all variables (and their distances) across treatment and control groups.

\begin{table}[h]
\centering
\caption{Balance Statistics}
\begin{tabular}{|l|c|c|c|c|}
\hline
Variable & Before Matching & After Matching & Improvement \\
\hline
Log Distance & 0.12 & 0.08 & 0.04 \\
Terrain Variability & 0.06 & 0.04 & 0.02 \\
\hline
\end{tabular}
\end{table}

These statistics indicate that balance increases dramatically for nearly every covariate after matching, so that inferences behind models that analyze all data may be misleading. As a simple first step, Ho et al. (2007) recommend comparing means between matched control hamlets and all hamlets across all variables and the distance measure. The smaller the differences between treatment and control hamlets, the greater the balance.\(^\text{17}\) The first four columns in Table 9 show that the balance between treatment and control improves markedly after matching. Ho et al. (2007) prefer to compare summary statistics.

\(^{16}\) This occurs because in practice, basic distributional assumptions about the covariates do not hold. In our case, neither the log of distance to an international border nor terrain variability is distributed normally.

\(^{17}\) There is no metric for what counts as a “small” difference. Cochran (1968) suggests that the differences should be less than a quarter of the standard deviation of the control; our differences are well below this cutoff point for all variables.
statistics from empirical quantile-quantile plots—these plots array “the quantiles of a variable of the
treatment group against that of the control group in a square plot.” Tight clustering around a 45 degree
line indicates greater balance. Comparing percent improvement in medians, means, and maxima of
deviations from the 45 degree line for all variables and the distance measure, we find great increases in
balance after matching. These statistics suggest that the genetic matching algorithm has provided us with
data that can approximate the counterfactual question at hand: are hamlets that are bombed in September
1969 subsequently more likely to be controlled by the Viet Cong in December than hamlets that were not
bombed?

Using the matched data, we investigate this counterfactual by estimating an ordered logistic
regression similar to the ones presented above. The results are in Table 10.

--- Table 10 about here ---

The coefficient on bombing is positive and statistically significant, confirming once again our results
from the baseline and instrumental variables models. All other variables are again significant in the
expected directions, with the exception of our village-level measure of development. This is further
evidence that development does not appear to predict downstream insurgent control.

To see the substantive effects of bombing on insurgent control, we turn to Table 11, which was
generated using Imai, et al (2007), gives the predicted differences in the probability that a bombed versus
an unbombed hamlet fell into each one of the control categories in December, conditional on its control
status in July. We expect that bombing in September increases the probability that a hamlet is at a higher
level of insurgent control in December, and decreases the probability that a hamlet is at a higher level of
government control in December.

--- Table 11 about here ---

The pattern of estimated probability changes confirms this relationship. The negative changes in
probabilities appear in the northeast half of Table 11, and the boundary between shaded and
unshaded describes roughly a 45 degree line separating the northeast from the southwest halves. Nearly every estimate is significantly different than zero. Furthermore, the pattern of substantive changes is sensible, decreasing in all columns as the difference in control from July and December increases. These substantive changes confirm that aerial bombing had dramatic consequences for insurgent control in Vietnam, leading to increased insurgent control regardless of previous levels of insurgent control.

We conclude with the caveat that matching is no panacea: it cannot correct for omitted variable bias or measurement error. These are the strengths of instrumental variables regressions such as those shown previously.18 Matching’s strength is in reducing the model-dependence of the counterfactual inferences made about the effect of a treatment of interest on an outcome of interest when data are not generated via randomized experiment. We are interested in the effect of bombing on insurgent control, and matching allows us to make tighter inferences about this quantity by pruning away irrelevant hamlets that were not bombed. Combined with our results from instrumental variables regressions, though, matching helps us to confirm that aerial bombing increased Viet Cong control in Vietnam.

Conclusion

It is appealing to believe that what we think is right is also instrumentally rational, but this is often not the case. Indiscriminate violence, used as a tool to repress and terrorize civilians, is repugnant, yet many governments with the power to inflict it believe that it serves their interests; it is vital to assess the validity of their belief. The data left behind by the Vietnam-era U.S. Government are extraordinary: a systematic and carefully collected record of an atrocity. The irony is that the atrocity appears to have been self-defeating, much as Hannah Arendt thought.

We are not the first to have criticized the air war over South Vietnam, nor the first to have claimed that it was counterproductive. But critics have been unable to marshal systematic evidence about

18 Omitted variables do affect instrumental variables regressions in the event that they are not conditionally independent from the instruments. But this is merely a component requirement of the assumption that instruments are conditionally independent of the error term in the true regression.
the air war’s impact on the South Vietnamese population. In fact, many appear to believe that aerial bombing failed because it was “bound to fail”—it was a pathology of a military apparatus that could not (Gibson 1986) or would not (Krepinevich 1986) understand its counterinsurgency mission. We turn the literature’s attention to the victims of the air war, using the most detailed data ever to gauge the effectiveness of the strategy that victimized them. South Vietnamese civilians suffered from aerial bombing, and this bombing harmed the strategic goals of the US and RVN.

Our findings speak to long-running debates about the effectiveness of American strategy in Vietnam. We complement a large body of revisionist scholarship (e.g. Sorley 1999) that holds that the ‘pacification’ campaign waged by the United States and allied forces in the years following the Tet Offensive was more successful than most observers believed at the time. Our results are consistent with the view that this success was due to a shift away from indiscriminate violence, and towards hamlet-level control operations. Our analysis covers the period in which American and South Vietnamese forces began to shift their attention to the direct, physical occupation of hamlets and away from attempts to engage the Viet Cong in decisive battles. But even in this period of what appears to be growing counterinsurgency success, we find that indiscriminate violence through aerial bombing remained prevalent. The Viet Cong’s success against counterinsurgency operations was not the result of American timidity that prevented the expansion of aerial bombardment (as maintained by, e.g., Warner 1978, or Senator Barry Goldwater – see Congressional Record 1984). This aerial bombardment itself hampered the counterinsurgency campaign. More of it would likely have hastened the victory of the Viet Cong.

In a broader context, our results reinforce and extend to the context of counterinsurgency a growing consensus on the limitations of airpower as a coercive instrument. We also help to explain why counterinsurgency remains such a challenging task with a long average duration, even for sophisticated and modern armies. Massive advantages in technology and firepower may confer only relatively minor
advantages, and may even reinforce ongoing insurgencies. Methodologically, we point to the need for caution in drawing conclusions from the analysis of aggregated data and case studies.
References

Table 1: Mass Killings and Civil Wars

<table>
<thead>
<tr>
<th>Guerilla War</th>
<th>Mass Killings</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>83 (92.22)</td>
<td>134</td>
</tr>
<tr>
<td>Yes</td>
<td>51 (68.00)</td>
<td>102</td>
</tr>
<tr>
<td>Total</td>
<td>90 (100)</td>
<td>165</td>
</tr>
</tbody>
</table>

Table 1: Control and Bombing, July - December 1969

<table>
<thead>
<tr>
<th></th>
<th>Not Bombed</th>
<th>Bombed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Government</td>
<td>97.09%</td>
<td>2.91%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Control</td>
<td>6,530</td>
<td>196</td>
<td>6,726</td>
</tr>
<tr>
<td>Moderate Government</td>
<td>95.64%</td>
<td>4.36%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Control</td>
<td>20,207</td>
<td>921</td>
<td>21,128</td>
</tr>
<tr>
<td>Contested</td>
<td>92.35%</td>
<td>7.65%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>19,526</td>
<td>1,618</td>
<td>21,144</td>
</tr>
<tr>
<td>Moderate Insurgent</td>
<td>62.34%</td>
<td>37.66%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Control</td>
<td>10,271</td>
<td>1,406</td>
<td>11,901</td>
</tr>
<tr>
<td>High Insurgent</td>
<td>62.34%</td>
<td>37.66%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Control</td>
<td>2,327</td>
<td>1,406</td>
<td>3,733</td>
</tr>
<tr>
<td>Total</td>
<td>91.07%</td>
<td>8.93%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

X^2(4) = 5000, Pr < 0.001. “Bombed” = Fixed-wing air attack sortie targeted coordinates within 2000 meter radius of hamlet center. Control = HES Enemy Military Model (2A).
Table 3: *The Effects of Bombing in July on Control in December, 1969*

<table>
<thead>
<tr>
<th>Control December 1969</th>
<th>High Government Control</th>
<th>Moderate Government Control</th>
<th>Contested</th>
<th>Moderate Insurgent Control</th>
<th>High Insurgent Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bombed?</td>
<td>No</td>
<td>Yes</td>
<td>Bombed?</td>
<td>No</td>
</tr>
<tr>
<td>High Government Control</td>
<td></td>
<td>72.00%</td>
<td>57.89%</td>
<td>9.68%</td>
<td>11.94%</td>
</tr>
<tr>
<td></td>
<td>(851)</td>
<td>(22)</td>
<td></td>
<td>(315)</td>
<td>(16)</td>
</tr>
<tr>
<td>Moderate Government Control</td>
<td></td>
<td>21.91%</td>
<td>13.16%</td>
<td>69.24%</td>
<td>49.25%</td>
</tr>
<tr>
<td></td>
<td>(259)</td>
<td>(5)</td>
<td></td>
<td>(2,253)</td>
<td>(66)</td>
</tr>
<tr>
<td>Contested</td>
<td></td>
<td>5.58%</td>
<td>26.32%</td>
<td>18.35%</td>
<td>32.09%</td>
</tr>
<tr>
<td></td>
<td>(66)</td>
<td>(10)</td>
<td></td>
<td>(597)</td>
<td>(43)</td>
</tr>
<tr>
<td>Moderate Insurgent Control</td>
<td></td>
<td>0.51%</td>
<td>2.63%</td>
<td>2.70%</td>
<td>6.72%</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(1)</td>
<td></td>
<td>(88)</td>
<td>(9)</td>
</tr>
<tr>
<td>High Insurgent Control</td>
<td></td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.03%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td></td>
<td>(1)</td>
<td>(0)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td></td>
<td>(1,182)</td>
<td>(38)</td>
<td></td>
<td>(3,254)</td>
<td>(134)</td>
</tr>
<tr>
<td>χ^2(4)</td>
<td></td>
<td>30.62 (prob < .001)</td>
<td>28.32 (prob < 0.001)</td>
<td>69.58 (prob < 0.001)</td>
<td>13.08 (prob < 0.001)</td>
</tr>
</tbody>
</table>

“Bombed” = At least one fixed-wing air attack sortie targeted coordinates within a 2000 meter radius of hamlet center during this time period.
Table 4: Ordered Logit on Control Status in December, 1969

<table>
<thead>
<tr>
<th></th>
<th>Model 5A</th>
<th>Model 5B</th>
<th>Model 5C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate Government</td>
<td>2.89***</td>
<td>2.27***</td>
<td>1.99***</td>
</tr>
<tr>
<td>Control</td>
<td>(0.081)</td>
<td>(0.087)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>Contested</td>
<td>4.98***</td>
<td>3.62***</td>
<td>3.17***</td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.101)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Moderate Insurgent</td>
<td>6.52***</td>
<td>4.68***</td>
<td>4.18***</td>
</tr>
<tr>
<td>Control</td>
<td>(0.097)</td>
<td>(0.113)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>High Insurgent Control</td>
<td>9.71</td>
<td>7.40***</td>
<td>6.68***</td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
<td>(0.162)</td>
<td>(0.171)</td>
</tr>
<tr>
<td>District average control</td>
<td></td>
<td>1.47***</td>
<td>1.49***</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>(0.040)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Bombed (count)</td>
<td>0.090**</td>
<td>0.082***</td>
<td>0.070***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.011)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Development Index</td>
<td></td>
<td></td>
<td>-0.333***</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Log of Distance to</td>
<td></td>
<td></td>
<td>-0.021</td>
</tr>
<tr>
<td>International Border</td>
<td>--</td>
<td>--</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Rough Terrain</td>
<td></td>
<td></td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Log of Hamlet Population</td>
<td></td>
<td></td>
<td>-0.109***</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>10772</td>
<td>10772</td>
<td>9661</td>
</tr>
<tr>
<td>Pseudo-R²</td>
<td>0.312</td>
<td>0.355</td>
<td>0.333</td>
</tr>
</tbody>
</table>

Note: all cutpoints are significant at the p < 0.01 level. *** = p < .001, ** = p < .01, * = p < .05
Table 5: Bombing and Expected Changes in December 1969 Control Probabilities

<table>
<thead>
<tr>
<th>Hamlet Control in December 1969</th>
<th>High Government Control</th>
<th>Moderate Government Control</th>
<th>Contested</th>
<th>Moderate Insurgent Control</th>
<th>High Insurgent Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Government Control</td>
<td>-0.763</td>
<td>-0.472</td>
<td>-0.222</td>
<td>-0.096</td>
<td>-0.009</td>
</tr>
<tr>
<td>Moderate Government Control</td>
<td>0.455</td>
<td>-0.203</td>
<td>-0.543</td>
<td>-0.595</td>
<td>-0.181</td>
</tr>
<tr>
<td>Contested</td>
<td>0.271</td>
<td>0.486</td>
<td>0.370</td>
<td>0.097</td>
<td>-0.525</td>
</tr>
<tr>
<td>Moderate Insurgent Control</td>
<td>0.035</td>
<td>0.180</td>
<td>0.365</td>
<td>0.521</td>
<td>0.291</td>
</tr>
<tr>
<td>High Insurgent Control</td>
<td>0.001</td>
<td>0.009</td>
<td>0.029</td>
<td>0.073</td>
<td>0.424</td>
</tr>
</tbody>
</table>

Cells contain the estimated change in the expected probability of being in a specified control level in December, by initial control level in July, as bombing sortie count changes from its 20th to its 80th percentile: Pr(Y = j | bombed = 80th percentile, control = k) − Pr(Y = j | bombed = 20th percentile, control = k), where j indexes control in December, k indexes control in July. Estimates for the 95% confidence interval excludes zero are bold. Negative changes in probability are shaded.
Table 6: *First Stage IV Results*

<table>
<thead>
<tr>
<th></th>
<th>MODEL 6A</th>
<th>MODEL 6B</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index of Insurgent</td>
<td>0.179***</td>
<td>0.160***</td>
</tr>
<tr>
<td>Control (July)</td>
<td>(0.032)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Index of Insurgent</td>
<td>0.139***</td>
<td>0.125***</td>
</tr>
<tr>
<td>Control (August)</td>
<td>(0.034)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>CONTROLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index of Insurgent</td>
<td>0.057**</td>
<td>0.064*</td>
</tr>
<tr>
<td>Control (September)</td>
<td>(0.028)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Development Index</td>
<td>-0.127**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td></td>
</tr>
<tr>
<td>Log of Distance to</td>
<td>-0.119***</td>
<td></td>
</tr>
<tr>
<td>International Border</td>
<td></td>
<td>(0.023)</td>
</tr>
<tr>
<td>Rough Terrain</td>
<td>0.011***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Log of Hamlet</td>
<td>-0.006</td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.727***</td>
<td>0.626*</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.293)</td>
</tr>
<tr>
<td>Shea's Partial R^2</td>
<td>0.011***</td>
<td>0.008***</td>
</tr>
</tbody>
</table>

***, = $p < .001$, ** = $p < .01$, * = $p < .05$
Table 7: Second Stage IV Results

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>MODEL 7A</th>
<th>MODEL 7B</th>
<th>MODEL 7C</th>
<th>MODEL 7D</th>
<th>MODEL 7E</th>
<th>MODEL 7F</th>
<th>MODEL 7G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control in December Bombed (count)</td>
<td>1.496***</td>
<td>1.544***</td>
<td>1.388***</td>
<td>1.182***</td>
<td>1.182***</td>
<td>1.48***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.141)</td>
<td>(0.173)</td>
<td>(0.142)</td>
<td>(0.146)</td>
<td>(0.146)</td>
<td>(0.278)</td>
<td></td>
</tr>
<tr>
<td>Bombed (binary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.743***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.965)</td>
</tr>
<tr>
<td>Index of Insurgent Control (September)</td>
<td>0.274***</td>
<td>0.257***</td>
<td>0.244***</td>
<td>0.218***</td>
<td>-0.782***</td>
<td>-0.708***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.054)</td>
<td>(0.048)</td>
<td>(0.042)</td>
<td>(0.042)</td>
<td>(0.103)</td>
<td></td>
</tr>
<tr>
<td>∆ Control (September to October)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.538)</td>
</tr>
<tr>
<td>Moderate Government Control Contested</td>
<td></td>
<td></td>
<td></td>
<td>0.747***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.099)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contested</td>
<td></td>
<td></td>
<td></td>
<td>1.388***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.098)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate Insurgent Control</td>
<td></td>
<td></td>
<td></td>
<td>1.588***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.119)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Insurgent Control</td>
<td></td>
<td></td>
<td></td>
<td>0.702**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.245)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development Index</td>
<td>0.103</td>
<td>0.109</td>
<td>0.110</td>
<td>0.046</td>
<td>0.046</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
<td>(0.059)</td>
<td>(0.060)</td>
<td>(0.052)</td>
<td>(0.052)</td>
<td>(0.070)</td>
<td></td>
</tr>
<tr>
<td>Log of Distance to International Border</td>
<td>0.181***</td>
<td>0.076*</td>
<td>0.155***</td>
<td>0.120***</td>
<td>0.120***</td>
<td>0.173***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.032)</td>
<td>(0.035)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.047)</td>
<td></td>
</tr>
<tr>
<td>Rough Terrain</td>
<td>-0.015***</td>
<td>-0.002</td>
<td>-0.015***</td>
<td>-0.011***</td>
<td>-0.011***</td>
<td>-0.014***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td></td>
</tr>
</tbody>
</table>
Second Stage IV Results (continued).

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of Hamlet Population</td>
<td>-0.025</td>
<td>0.013</td>
<td>-0.043</td>
<td>-0.031</td>
<td>-0.031</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.032)</td>
<td>(0.032)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.034)</td>
<td></td>
</tr>
<tr>
<td>District average control</td>
<td></td>
<td>0.286***</td>
<td>0.286***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.049)</td>
<td>(0.049)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.438***</td>
<td>-0.268</td>
<td>0.320</td>
<td>-0.123</td>
<td>-0.153</td>
<td>-0.153</td>
<td>-0.257</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.477)</td>
<td>(0.409)</td>
<td>(0.442)</td>
<td>(0.369)</td>
<td>(0.369)</td>
<td>(0.466)</td>
</tr>
<tr>
<td>N</td>
<td>10772</td>
<td>9661</td>
<td>9661</td>
<td>9661</td>
<td>9661</td>
<td>9661</td>
<td>9661</td>
</tr>
<tr>
<td>LM Statistic</td>
<td>114.19***</td>
<td>81.16***</td>
<td>103.41***</td>
<td>96.62***</td>
<td>67.95***</td>
<td>67.95***</td>
<td>29.05***</td>
</tr>
<tr>
<td>Wald F Statistic</td>
<td>57.69***</td>
<td>40.89***</td>
<td>52.22***</td>
<td>48.75***</td>
<td>33.95**</td>
<td>33.95**</td>
<td>14.55**</td>
</tr>
<tr>
<td>Hansen's J Statistic</td>
<td>0.086</td>
<td>0.060</td>
<td>0.342</td>
<td>0.335</td>
<td>0.154</td>
<td>0.154</td>
<td>0.404</td>
</tr>
<tr>
<td>p-value</td>
<td>0.769</td>
<td>0.806</td>
<td>0.559</td>
<td>0.563</td>
<td>0.695</td>
<td>0.695</td>
<td>0.5249</td>
</tr>
</tbody>
</table>

*** = p < .001, ** = p < .01, * = p < .05. For Wald F statistics, *** = p < .05 less than 10% IV bias, ** = p < .05 less than 15% IV bias.
Table 8: Robustness Tests and Unobserved Heterogeneity

<table>
<thead>
<tr>
<th></th>
<th>MODEL 9A</th>
<th>MODEL 9B</th>
<th>MODEL 9C</th>
<th>MODEL 9D</th>
<th>MODEL 9E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombed (count)<sup>a</sup></td>
<td>0.003**</td>
<td>8.32***</td>
<td>0.008***</td>
<td>0.018*</td>
<td>0.084***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(1.42)</td>
<td>(0.002)</td>
<td>(0.007)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Rough Terrain</td>
<td>--</td>
<td>--</td>
<td>0.003</td>
<td>-0.002</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Log of Distance to International Border<sup>b</sup></td>
<td>--</td>
<td>--</td>
<td>0.246***</td>
<td>0.249***</td>
<td>0.184***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Development Index</td>
<td>-0.111***</td>
<td>-0.914***</td>
<td>-0.053*</td>
<td>-0.054*</td>
<td>-0.034</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.169)</td>
<td>(0.022)</td>
<td>(0.022)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Log of Hamlet Population</td>
<td>-0.053**</td>
<td>0.119</td>
<td>-0.011</td>
<td>-0.015</td>
<td>-0.036</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.602)</td>
<td>(0.022)</td>
<td>(0.020)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Hamlet control (lag)</td>
<td>-1.02***</td>
<td>-0.634</td>
<td>0.049***</td>
<td>0.046***</td>
<td>0.349***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.515)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>N</td>
<td>47577</td>
<td>47418</td>
<td>37474</td>
<td>37474</td>
<td>37474</td>
</tr>
<tr>
<td>Model</td>
<td>Fixed Effects</td>
<td>Fixed Effects, IV</td>
<td>Arellano-Bond</td>
<td>Arellano-Bond</td>
<td>Arellano-Bond</td>
</tr>
<tr>
<td>Instruments for Bombed (count)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

^aBombed (count) is lagged one month in Model 9A.
^bDistance to an international border and rough terrain are constant over time, so cannot be estimated in fixed effects models.
*** = p < .001, ** = p < .01, * = p < .05.
Table 9: Balance Statistics, Unmatched Versus Matched Data

<table>
<thead>
<tr>
<th></th>
<th>Unmatched Data</th>
<th>Matched Data</th>
<th>Percent Improvement</th>
<th>Median</th>
<th>Mean</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treated</td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Distance Measure</td>
<td>0.132</td>
<td>0.074</td>
<td>0.132</td>
<td>98.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rough Terrain</td>
<td>6.577</td>
<td>5.349</td>
<td>6.577</td>
<td>74.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of Distance to International Border Development Index</td>
<td>11.046</td>
<td>11.059</td>
<td>11.046</td>
<td>23.34</td>
<td>66.72</td>
<td>68.68</td>
</tr>
<tr>
<td>Log of Hamlet Population</td>
<td>-0.328</td>
<td>-0.093</td>
<td>-0.328</td>
<td>99.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamlet control</td>
<td>3.486</td>
<td>2.731</td>
<td>3.486</td>
<td>99.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>District average control</td>
<td>3.218</td>
<td>2.719</td>
<td>3.218</td>
<td>97/42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10: *Model G9: Bombing and Insurgent Control, Matched Data*

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombed (binary)</td>
<td>0.297*</td>
<td>0.138</td>
<td>2.151</td>
</tr>
<tr>
<td>Rough Terrain</td>
<td>0.015**</td>
<td>0.006</td>
<td>2.314</td>
</tr>
<tr>
<td>Log of Distance to IB</td>
<td>-0.256**</td>
<td>0.085</td>
<td>-3.025</td>
</tr>
<tr>
<td>Development Index</td>
<td>-0.077</td>
<td>0.145</td>
<td>0.528</td>
</tr>
<tr>
<td>Log of Hamlet Population</td>
<td>-0.413**</td>
<td>0.086</td>
<td>-4.787</td>
</tr>
<tr>
<td>Hamlet control</td>
<td>1.650**</td>
<td>0.110</td>
<td>14.974</td>
</tr>
<tr>
<td>District average control</td>
<td>1.964**</td>
<td>0.164</td>
<td>11.964</td>
</tr>
<tr>
<td>Cut Point 1</td>
<td>-0.294*</td>
<td>1.157</td>
<td>-0.254</td>
</tr>
<tr>
<td>Cut Point 2</td>
<td>4.063**</td>
<td>1.128</td>
<td>3.603</td>
</tr>
<tr>
<td>Cut Point 3</td>
<td>7.356**</td>
<td>1.147</td>
<td>6.412</td>
</tr>
<tr>
<td>Cut Point 4</td>
<td>10.465**</td>
<td>1.184</td>
<td>8.84</td>
</tr>
<tr>
<td>N</td>
<td>1252</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ordered logistic regression. ** = \(p < .01 \), * = \(p < .05 \)
Table 11: *Bombing and Expected Changes in December 1969 Control Probabilities*

<table>
<thead>
<tr>
<th>Hamlet Control in December 1969</th>
<th>High Government Control</th>
<th>Moderate Government Control</th>
<th>Contested</th>
<th>Moderate Insurgent Control</th>
<th>High Insurgent Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Government Control</td>
<td>-0.016</td>
<td>-0.003</td>
<td>-0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Moderate Government Control</td>
<td>-0.028</td>
<td>-0.069</td>
<td>-0.036</td>
<td>-0.009</td>
<td>-0.002</td>
</tr>
<tr>
<td>Contested</td>
<td>0.042</td>
<td>0.061</td>
<td>-0.007</td>
<td>-0.063</td>
<td>-0.035</td>
</tr>
<tr>
<td>Moderate Insurgent Control</td>
<td>0.002</td>
<td>0.011</td>
<td>0.041</td>
<td>0.058</td>
<td>-0.012</td>
</tr>
<tr>
<td>High Insurgent Control</td>
<td>0.000</td>
<td>0.001</td>
<td>0.003</td>
<td>0.013</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Cells contain the estimated change in the expected probability of being in a specified control level in December, by initial control level in July: $\Pr(Y = j | \text{bombed} = 1, \text{control} = k) - \Pr(Y = j | \text{bombed} = 0, \text{control} = k)$, where j indexes control in December, k indexes control in July. Estimates whose 95% confidence interval excludes zero are bold. Negative changes in probability are shaded.
Appendix A: Index construction and questionnaire text.

Security Model
MOD2A = MOD1A + MOD1B

Political Model
MOD2C = MOD1H + MOD1I

MOD1A: Enemy Military Presence

VMB2
“During the month, was the main surface route leading from this village to the province capital open during daylight hours?
 0. No
 1. Yes, but regular enemy harassment or taxation
 2. Yes, sporadic enemy harassment or taxation
 3. Yes, no enemy harassment of taxation.”

HMB1
“Do enemy forces physically control this hamlet?
 0. No
 1. Yes
 2. Yes, defensive works have been constructed by enemy forces to establish a ‘combat hamlet.’”

HQC4
“Can the village security forces expect a reasonable degree of fire support (i.e. air, artillery, helicopter gunships, etc.) if the need arises?
 0. No
 1. Yes, occasionally
 2. Nearly always.”

VQB2
“What is the estimated size of the largest village guerrilla unit regularly present in this village? (Do not include local or main force units)
 0. None
 1. Less than a squad
 2. About a squad
 3. About a platoon
 4. More than a platoon.”

VQB3
“What is the estimated size of the largest enemy main or local force unit regularly present in this village or adjacent villages?
 0. None
 1. Less than a platoon
 2. About a platoon

52
3. About a company
4. A battalion or more.”

VQB4
“Are there areas in or adjacent to this village which enemy forces use as assembly areas for operations against friendly activities in the general area?
0. No
1. Yes, temporary havens
2. Yes, small bas areas
3. Yes, major base areas.”

MOD1B: Enemy Military Activity

VMB1
“What was the estimated size of the largest local or main force unit present in or near inhabited areas of this village at any time during the month?
0. None
1. Less than a platoon
2. About a platoon
3. About a company
4. A battalion or more.”

HMB2
“Did the enemy initiate action against local security forces in or near the hamlet during the month?
0. No
1. Yes, once
2. Yes, sporadically
3. Yes, repeatedly

HMB3
“What was the most serious level of enemy-initiated military activity directed at local security force positions in or near this hamlet?
0. None
1. Minor harassment (sniping, mining, etc.)
2. Attack by coordinated small arms or automatic weapons fire
3. Attack by heavy weapons fire (mortar, rocket, RR, etc.)
4. Ground assault – repelled
5. Ground assault – friendly position over-run.”

HMB4
“Were armed enemy military forces present in inhabited areas of this hamlet during this month?
0. No
1. Yes, once
2. Yes, sporadically
3. Yes, regularly.”

HMD1
“Were enemy military activities the direct cause of civilian casualties among hamlet residents?
HMD2
"Were enemy military activities the direct cause of physical damage to the property (personal possessions, livestock, crops, dwellings, etc.) of hamlet during the month?
0. No
1. Yes, once
2. Yes, serous but localized
3. Yes, widespread.”

HMD5
“What has been the net impact of military activities in or near this hamlet during the month?
0. Friendly activity, but no enemy contacts
1. Significant victory for friendly forces
2. Minor victory for friendly forces
3. Neither defeat nor victory
4. Minor defeat(s) of friendly forces
5. Significant defeat of friendly forces
6. No friendly activity.”

MOD1H: Enemy Political Presence.
VQB1
“Which of the following most closely reflects the activity of the village level VC infrastructure in the village?
0. No known or suspected infrastructure
1. Sporadic covert activity, little or no overt activity
2. Regular covert activity, sporadic overt activity
3. Regular over activity, but no firmly established
4. Unchallenged authority in the village.”

VQB5
“Do enemy forces tax goods and produce moving to or from this village?
0. No
1. Yes, sporadically
2. Yes, regularly.”

HQB1
“Which of the following most closely reflects the status of the enemy infrastructure in this hamlet?
0. No known or suspected infrastructure
1. Sporadic covert activity, little or no overt activity
2. Regular covert activity, sporadic overt activity, generally at night
3. The primary authority in the hamlet at night, but most operate covertly in the day
4. The primary authority present day and night.”

HQB2
“Does the enemy collect taxes from hamlet households (in cash or in kind)?
0. No
1. Yes, sporadically
2. Yes, regularly and systematically.”

HQB3
“Do enemy hamlet households have a member or members who participated, by coercion or otherwise [sic] in enemy-organized non-military group activities (public meetings, demonstrations, work gangs, etc.) during the past quarter?
0. No, none
1. Yes, a few (less than 10%)
2. Yes, some (10% - 40%)
3. Yes, many (41% - 90%)
4. Yes, all or nearly all.”

HQE3
“Who normally settles civil disputes (property rights, boundary disputes, etc.) involving hamlet residents?
0. VC infrastructure officials
1. Religious leaders, elders, or prominent individuals (neither GVN [sic] or VC officials)
2. GVN officials.”

HQF1
“Do any hamlet households have a member or members in enemy service?
0. No, none
1. Yes, a few (less than 10%)
2. Yes, some (10% - 40%)
3. Yes, many (41% - 90%)
4. Yes, all or nearly all.”

HQF2
“Do any hamlet households have a member or members working in GVN civil or military service?
0. No, none
1. Yes, a few (less than 10%)
2. Yes, some (10% - 40%)
3. Yes, many (41% - 90%)
4. Yes, all or nearly all.”
MOD11: Enemy Political Activity.

HMB5
“Where any attempts at selective terrorism (kidnapping or assassination) directed at particular GVN officials, prominent residents or local leaders of the hamlet during the month?
0. No
1. Yes, once
2. Yes, more than once.”

HMB6
“Were any acts of general or non-selective terrorism (mining, sabotage, harassing fire, bombing of a public place, etc.) directed against people of this hamlet during the month?
3. No
4. Yes, once
5. Yes, more than once.”

HMB7
“Have incidents targeted against GVN non-military activities in this hamlet (GVN projects, offices, National Police, RD Cadre, etc.) occurred in the past month?
0. No
1. Yes, minor
2. Yes, serious.”

HMB8
“Were any enemy propaganda meetings held or was printed propaganda distributed in this hamlet during the month?
0. No
1. Yes, once
2. Yes, more than once.”

VQB1
“Which of the following most closely reflects the activity of the village level VC infrastructure in the village?
0. No known or suspected infrastructure
1. Sporadic covert activity, little or no overt activity
2. Regular covert activity, sporadic overt activity
3. Regular over activity, but no firmly established
4. Unchallenged authority in the village.”

HQB1
“Which of the following most closely reflects the status of the enemy infrastructure in this hamlet?
0. No known or suspected infrastructure
1. Sporadic covert activity, little or no overt activity
2. Regular covert activity, sporadic overt activity, generally at night
3. The primary authority in the hamlet at night, but most operate covertly in the day
4. The primary authority present day and night.”
Appendix B: Procedure for HES Index Construction

The procedure used to generate the indices HES level 1 indices (or “sub-models”) can best be described via an example. All hamlets were initially given neutral prior probabilities: \(p(H_i = A) = p(H_i = B) = p(H_i = C) = p(H_i = D) = p(H_i = E) = .20 \).\(^{19}\) One HES question text read: “During the hours of darkness, what is the probable reaction time of the nearest friendly [government] ground reaction force, if called on by local security forces?” Four answers were possible: “1. No reaction support available; 2. More than four hours; 3. Two to four hours; 4. Less than two hours.” For each possible answer, the HES assigned conditional probabilities that hamlet \(i \) was an A, B, C, D, or E hamlet, as follows:\(^{20}\)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No reaction support available</td>
<td>0</td>
<td>0</td>
<td>.1</td>
<td>.4</td>
<td>.75</td>
</tr>
<tr>
<td>2. More than four hours</td>
<td>.05</td>
<td>.1</td>
<td>.15</td>
<td>.3</td>
<td>.15</td>
</tr>
<tr>
<td>3. Two to four hours</td>
<td>.2</td>
<td>.25</td>
<td>.25</td>
<td>.2</td>
<td>.1</td>
</tr>
<tr>
<td>4. Less than two hours</td>
<td>.75</td>
<td>.65</td>
<td>.50</td>
<td>.1</td>
<td>0</td>
</tr>
</tbody>
</table>

The conditional probabilities were “determined from estimates supplied by a large number of field and staff personnel averaging over two years of in-country experience in Vietnam with pacification expertise at all levels of [the] RVN [Republic of Vietnam]…. They were defined at the beginning of the system operation and will remain constant” (CORDS/RAD, Appendix C). Assuming that the “reaction

\(^{19}\) In other words, the probability that hamlet \(i \) is in the “A” category is equal to the probability that hamlet \(i \) is in the “B” category, and so forth.

\(^{20}\) These are the actual conditional probabilities used for this HES question. One hole in our knowledge of the HES is that the conditional probabilities for most of the questions are not found in the database’s supporting documentation.
time” indicator was scored 4 for hamlet \(i \), the probability that hamlet \(i \) was an “A” hamlet was computed as follows:

\[
p(H_i = A \mid Q = 4) = \frac{p(Q = 4 \mid A)}{p(Q = 4 \mid A) + p(Q = 4 \mid A)}
\]

\[
= \frac{.75(.20)}{(.75)(.20) + (.65)(.20) + (.5)(.20) + (.1)(.20) + (0)(.20)}
\]

\[
= \frac{.15}{.4} = .375
\]

That is, the (posterior) probability that hamlet \(i \) is an “A” hamlet, conditional on the observation that friendly reaction time is less than 2 hours, and assuming neutral priors, is .375. Posterior probabilities for the other categories (B, C, D, and E) were computed in the same way, and the category with the highest posterior was assigned to the hamlet. Posteriors were subsequently used as priors for the next indicator, and so forth for each indicator used in the construction of each level 1 index.

Level 1 models were combined into level 2 and higher level models using decision tables. For example, the Level 2 ‘Enemy Military’ model (Model 2A) was derived from the ‘Enemy Military Presence’ (1A) and ‘Enemy Military Activity’ (1B) models as follows: if both the level 1 models were coded ‘A’, the level two model was coded ‘A’ as well; if the level 1 models were coded ‘A’ and ‘B’, then the level two model was coded ‘B’, and so forth.\(^{21}\)

\(^{21}\) The complete decisions tables are found in the National Archives and Records Administration, Hamlet Evaluation System (HES70) Documentation, Records Group 330 – Records of the Office of the Secretary of Defense, Document Number 3-330-75-141.
Appendix C: Enemy Military Model (2A)

Category A:
1. No enemy guerrilla units are regularly present in the village.
2. Enemy is highly unlikely to have initiated action against local security forces during the month.
3. Armed enemy military forces are very highly unlikely to have entered inhabited areas of the hamlet during the month.
4. No enemy main force units are present in or near inhabited areas of the village during the month.
5. Enemy forces are very highly unlikely to have had assembly areas in or adjacent to this village for use in operations against friendly activities in the general area during the quarter.

Category B:
1. Size of the largest enemy guerrilla units regularly present in the village is less than a squad.
2. Enemy is unlikely to have initiated action against local security forces during the month.
3. Armed enemy military forces are highly unlikely to have entered inhabited areas of the hamlet during the month.
4. The largest enemy main or local force present in or hear inhabited areas of the village during the month was less than a platoon.
5. Enemy forces are unlikely to have had temporary havens in or adjacent to this village for use in operations against friendly activities in the general area during the quarter.

Category C:
1. Size of the largest enemy guerrilla units regularly present in the village is between a squad and a platoon.
2. Enemy is likely to have initiated action against local security forces during the month.
3. Armed enemy military forces are unlikely to have entered inhabited areas of the hamlet during the month.
4. The largest enemy main or local force present in or hear inhabited areas of the village during the month was about a platoon.
5. Enemy forces are likely to have had temporary havens or small base areas in or adjacent to this village for use in operations against friendly activities in the general area during the quarter.

Category D:
1. Size of the largest enemy guerrilla units regularly present in the village is about a platoon.
2. Enemy is likely to have initiated action against local security forces during the month.
3. Armed enemy military forces are likely to have entered inhabited areas of the hamlet during the month.
4. The largest enemy main or local force present in or hear inhabited areas of the village during the month was about a company.
5. Enemy forces are likely to have had large base areas in or adjacent to this village for use in operations against friendly activities in the general area during the quarter.

Category E:
1. Enemy units of platoon size or larger are regularly present in or near the village.
2. If local security forces were present, enemy-initiated action against them was highly likely during the month.
3. Armed enemy military forces were regularly present in inhabited areas of the hamlet during the month.
4. A company or more of enemy main or local force units was present in or near inhabited areas of the village during the month.
5. Enemy forces are likely to have had major base areas in or adjacent to this village for use in operations against friendly activities in the general area during the quarter.