\[
H_{\text{Heff}} \ket{x} = \frac{1}{2^n/2} \sum_y (-1)^{x \cdot y} \ket{y}
\]

\[
\left(H_{\text{Heff}} \right)^2 = \frac{1}{2^n} \mathbb{Z}_2 \quad \text{Fourier transform}
\]

\[-1 \rightarrow e^{2\pi i/N} \quad \mathbb{Z}_N \quad \text{Fourier transform}\]
Simon's problem

Exponential speed-up

$f: n \rightarrow n-1$ bits

$f(x) = f(y)$ iff $x = y \oplus a$

[precursor to $f(x) = f(x+r)$]

Classically, how to determine a?

Try x_0, x_1, x_2, \ldots

if get lucky: $f(x_i) = f(x_j)$

$x_i = x_j \oplus a \iff a = x_j \oplus x_i$

but if not lucky, then we know $a \neq x_i \oplus x_j$ for any pair so far
\[f(x) = f(y) \quad \text{iff} \quad x = y \oplus \alpha \]

\[
\begin{align*}
 f(000) &= 5 \\
 f(001) &= 0 \\
 f(011) &= 6 \\
 f(111) &= 6
\end{align*}
\]

\[
\begin{align*}
 f(011 \oplus 100) &= f(111) \\
 f(111 \oplus 100) &= f(011)
\end{align*}
\]

in the real setting,

\[f(x) = f(x + r) \]
period a has n bits.
Classically, in the worst case would take $2^{n-1} + 1$ calls to $f(x)$ (if very very unlucky...)

But recall "birthday paradox" if each pair has a $\frac{1}{2^{n-1}}$ probability of colliding, so the probability of at least one collision after m values is $\binom{m}{2}$. For a appreciable probability, need:

\[
\frac{m(m-1)}{2} \sim m^2 \sim 2^n,
\]

so $m \sim 2^{n/2}$.
Equivalently if we try m values X_0, X_{m-1} then at most we've excluded \(\binom{m}{2} = \frac{m(m-1)}{2} \) values of a.

In order to exclude all but one value of a, how many values of \(\{X_k\} \) necessary?

need $m(m-1) \leq 2^{n \frac{\log n}{2}}$ \(\Rightarrow m \sim 2^{\frac{n}{2}} \)

*unless “carelessly” choose $x_e \oplus X_i$, then $x_e \oplus x_j, x_e \oplus x_k$ don't exclude any new pairs
So classically to determine a n bit a, we need $\sim 2^{n/2}$ invocations f. Quantumly: need $O(n + \alpha)$

E.g. For $n = 100$, $2^{n/2} = 2^{50} \approx 10^{15}$ at $10M/\text{sec}$ $\Rightarrow 3$ yrs

with QM take only 120 invocations to get a (with probability $> 1 - 10^{-6}$)

\[
U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle
\]

\[
U_f H^{\otimes n} |x\rangle |0\rangle = \frac{1}{2^{n/2}} \sum_{0 \leq x < 2^n} |x\rangle |f(x)\rangle
\]
\[
\frac{1}{\sqrt{2^n}} \sum_{x} |f(x)\rangle
\]

\[0 \leq x < 2^n\]

measure output, collapses to

\[\frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) |f(x_0)\rangle\]

but only get one of two

by measuring input \(f\) can't clone above state.

But we can apply an operator before measuring inputs.

We renounce learning \(x_0, x_0 \oplus a\) values but we can learn a relation between them: their mod 2 sum.
\[H^n \frac{1}{\sqrt{2^n}} \left(\left| x_0 \right> + \left| x_0 \oplus a \right> \right) \]

\[\frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x_0 \cdot y} \left| y \right> + \sum_{y} (-1)^{x_0 \cdot y + (x_0 \oplus a) \cdot y} \left| y \right> \]

\[\frac{1}{\sqrt{2^{n+1}}} \sum_{y} (-1)^{x_0 \cdot y} \left| y \right> \]

\[\begin{align*}
 &a \cdot y = 0 \quad \text{then} \quad 1 + (-1)^{a \cdot y} = 2 \\
 &a \cdot y = 1 \quad \text{then} \quad 1 + (-1)^{a \cdot y} = 0
\end{align*} \]

\[= \frac{1}{2^{(n-1)/2}} \sum_{y} (-1)^{x_0 \cdot y} \left| y \right> \]

\[y \left| y \cdot a = 0 \right. \]
(sum is over only y with y.a = 0)
Measure: gives some y s.t. y.a = 0
Each such y constrains value of a
to live in orthogonal subspace.

In a real vector space, would be easy: orthogonal to n-1 vectors
generically determines a single
vector (up to scale factor).
E.g. 3D

\[\vec{a} \quad \vec{y}_0 \quad \vec{y}_1 \]

but for binary valued vectors,
there's a \(1/2^n\) chance of \(y = (0, \ldots, 0)\),
and an increasing probability that the
k-th y will be a linear combination
of the earlier ones. So need more than
n-1 to be highly likely to pin down a
e.g. \(n=3 \), need to find \(\alpha = (a_2, a_1, a_0) \)

measure \(y = 101 \quad a_0 + a_2 = 0 \)

\(y = 010 \quad a_1 = 0 \)

since \(a \neq 0 \), constrains \(\alpha = 101 \)

classically \(f \) once gives no info on \(\alpha \)

\(f \) twice excludes one value of \(\alpha \)

quantumly \(f \) once excludes half the possible values, \(f \) again excludes half again, so twice excludes \(\frac{3}{4} \) of possible values

if really lucky can get first \(n-1 \) linearly independent (and non-zero) values of \(y \),

and hence determine \(\alpha \).

in general, need \(n+\alpha \) values of \(y \) to have

\(> 1 - \frac{1}{2^{\alpha+1}} \) probability of \(n-1 \) linearly independent
\[a = (0,0,1) \]

\[y = \begin{pmatrix} 0,0,0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0,0,1 \end{pmatrix} \\
 \begin{pmatrix} 1,1,0 \end{pmatrix} \]

See Mermin Appendix G for details of argument for why \(n + d \)
values of \(y \) have probability > \(1 - \frac{1}{2^{n+1}} \)
of having \(n-1 \) linearly independent

\(n-1 \) columns \(S = \text{basis for } (n-1)-\text{dim orthog space} \)

\[\begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix} \]

\(n+d \) rows

A value of \(y \) in each row.

Row rank = Column rank
probability they’re not linearly dependent

\[\left(1 - \frac{1}{2} n^x \right) \leq \text{probability that 1st column not all zero} \]

\[\left(1 - \frac{1}{2} n^x - 1 \right) \leq \text{probability that 2nd column \neq 0 and also not first column} \]

\[\left(1 - \frac{1}{2} \alpha + 1 \right) \leq \text{also not lin. comb. of first } n \alpha + 1 \text{ columns} \]

product \(\geq 1 - \frac{1}{2} \alpha + 1 \)

\(\alpha = 20 \geq 1 - 10^{-6} \)

i.e., high probability of enough linearly independent y values to determine a
Period Finding (real setting)

Consider $f(x) = b^x \mod n$

"discrete exponential"

Suppose $f(x+r) = f(x)$
has period r, $b^r \mod n = 1$ easy?

But: f

try m times $(m) = \frac{m(m-1)}{2}$ pairs

f is an n-bit function

so x has 2^n values

$(m) \sim m^2 \sim 2^n$ $m \sim 2^{n/2}$