la>

 $|1\rangle$

Deutsch '92 (p.44), factor of 2 speedup to determine whether or not 1bit \rightarrow 1bit function f(x) is constant

Bernstein–Vazirani '93 (p.52), $f(x) = a \cdot x \equiv$ $\oplus_i a_i x_i$, factor of *n* speedup to determine *a*

Uf

Hŀ

Н

10>

11>

 $\frac{1}{2^{1/2}}(|\mathbf{x}_0\rangle + |\mathbf{x}_0 \oplus \mathbf{a}\rangle) - H^{\otimes n} - M$

Simon '94 (p.56), $f(x) = f(x \oplus a)$, measured y has $a \cdot y = 0$ (equivalently $\sum_{i} a_i y_i = 0 \mod 2$),

exponential speedup
$$(2^{n/2} \to O(n))$$
 to determine a

Shor '94 (p.70), f(x) = f(x + r), resulting y is measured with probability $p(y) = \frac{1}{2^n m} \left| \sum_{k=0}^{m-1} e^{2\pi i k r y/2^n} \right|^2$, gives $|y-2^n/r| < 1/2$ with p > .4, sufficient to determine

period r via partial fraction expansion, exponential speedup $(n2^n, \exp(n^{1/3}) \to O(n^3))$. (Note: replaces $\mathbf{H}^{\otimes n}|x\rangle = \frac{1}{2^{n/2}} \sum_{0 \le y < 2^n} e^{i\pi x \cdot y} |y\rangle$ with $\mathbf{U}_{\mathrm{FT}}|x\rangle = \frac{1}{2^{n/2}} \sum_{0 \le y < 2^n} e^{2\pi i x y/2^n} |y\rangle$.) Practical application is $f(x) \equiv b^x \mod N$, where $b \equiv a^c \mod N$ is an encrypted message, from which d', satisfying $cd' \equiv 1 \mod r$, can be calculated, and d' recovers unencrypted message $a \equiv b^{d'} \mod N$ (in contrast to using d, with $cd = 1 \mod (p-1)(q-1)$, where N = pq and r divides $(p-1)(q-1) = |G_{pq}|$.

Grover '96 (p.90), f(x) = 1 only for (m) marked value(s) x = a, uses "phase kickback" to express \mathbf{U}_f in terms of $\mathbf{V} = \mathbf{1} - 2|a\rangle\langle a|$, and $\mathbf{W} = 2|\phi\rangle\langle\phi| - \mathbf{1} = \mathbf{H}^{\otimes n}(2|0\rangle\langle0| - \mathbf{1})\mathbf{H}^{\otimes n}$ is easily constructed. Applying $\ell \approx \frac{\pi}{4} \frac{2^{n/2}}{\sqrt{m}}$ times gives probability $p(a) \approx 1 - O(m/2^n)$, for square-root speedup $(2^n/m \to \sqrt{2^n/m})$.

P. Ginsparg, Physics 4481-7681; CS 4812