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Bernstein–Vazirani ’93 (p.52), f(x) = a · x ≡
⊕iaixi, factor of n speedup to determine a
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Simon ’94 (p.56), f(x) = f(x⊕a), measured y has
a · y = 0 (equivalently

∑

i aiyi = 0 mod2),
exponential speedup (2n/2 → O(n)) to determine a
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Shor ’94 (p.70), f(x) = f(x + r), resulting y is mea-

sured with probability p(y) = 1
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gives |y−2n/r| < 1/2 with p > .4, sufficient to determine

period r via partial fraction expansion, exponential speedup (n2n, exp(n1/3) → O(n3) ).

(Note: replacesH⊗n|x〉 = 1
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Practical application is f(x) ≡ bx modN , where b ≡ ac modN is an encrypted message, from which d′,
satisfying cd′ ≡ 1modr, can be calculated, and d′ recovers unencrypted message a ≡ bd

′

modN (in contrast

to using d, with cd = 1mod(p− 1)(q − 1), where N = pq and r divides (p− 1)(q − 1) = |Gpq|).
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ℓ times

Grover ’96 (p.90), f(x) = 1 only for (m) marked value(s) x = a, uses “phase kickback”
to express Uf in terms of V = 1− 2|a〉〈a|, and W = 2|φ〉〈φ| − 1 = H

⊗n
(
2|0〉〈0| − 1

)
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is easily constructed. Applying ℓ ≈ π
4

2
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times gives probability p(a) ≈ 1−O(m/2n), for

square-root speedup (2n/m →
√

2n/m ).
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