
The Quantum Fourier Transform UFT is defined to transform the state |x〉 according to

UFT|x〉 =
1

2n/2

∑
0≤y<2n

e2πixy/2
n|y〉 , (1)

where xy is the ordinary product of the numbers x and y.

In terms of the binary expansion x = xn−1 . . . x1x0, division by 2 moves the decimal point

to the left by one place value, so x/2n = 0.xn−1 . . . x1x0 (recall that in binary, .1 = 1/2, .01 =

1/4, .11 = 3/4, x0/8 = .00x0, and so on). In terms of its binary expansion, y = yn−1 . . . y1y0,

the numerical value of y is given by y =
∑n−1

j=0 yj2
j. Since multiplication by 2j just shifts the

decimal point to the right by j places, we can write1

xy/2n = yn−1 · xn−1 . . . x1.x0 + yn−2 · xn−1 . . . x2.x1x0 + · · ·
+ y1 · xn−1.xn−2 . . . x0 + y0 · 0.xn−1 . . . x0 .

Integer multiples of 2π in the exponent of e2πixy/2
n

do not contribute to the phase, so we

can retain only

e2πixy/2
n

= e2πiyn−10.x0 e2πiyn−20.x1x0 · · · e2πiy10.xn−2...x0 e2πiy00.xn−1...x0 .

Since yj indicates whether the jth bit of y (counting from the right) is 1 or 0, it follows that

the formula (1) for UFT can be written:

UFT|xn−1 . . . x0〉 =
1

2n/2
(
|0〉+ e2πi0.x0|1〉

)(
|0〉+ e2πi0.x1x0 |1〉

)
· · ·
(
|0〉+ e2πi0.xn−1...x0|1〉

)
(2)

(where the sum over the two values of each qubit generates the sum over all y in (1)).

To draw a circuit diagram for this unitary transformation of states, we define the phase

operator Vk ≡
(

1 0

0 eπi/2
k

)
. Then for example H|x0〉 = 1√

2
(|0〉 + (−1)x0 |1〉) = 1√

2
(|0〉 +

e2πi0.x0 |1〉), and V x0
1 H|x1〉 = V x0

1
1√
2
(|0〉+ e2πi0.x1|1〉) = 1√

2
(|0〉+ e2πi0.x1x0 |1〉), since V x0

1 only

adds the additional phase 2πi/4 = 2πi · 0.01 if x0 = 1. Eqn. (2) can thus be rewritten

UFT|xn−1 . . . x0〉 = (H|x0〉)
(
V x0
1 H|x1〉

)(
V x0
2 V x1

1 H|x2〉
)
· · ·(

V x0
n−2V

x1
n−3 · · ·V

xn−3

1 H|xn−2〉
)(
V x0
n−1V

x1
n−2 · · ·V

xn−2

1 H|xn−1〉
)
,

(3)

which provides the circuit for UFT:

|x0〉 • • · · · • H
1√
2

(
|0〉+ e2πi0.x0|1〉

)
|x1〉 • • · · · H V1

1√
2

(
|0〉+ e2πi0.x1x0|1〉

)
...

...
...

...
...

|xn−2〉 • H · · · Vn−3 Vn−2
1√
2

(
|0〉+ e2πi0.xn−2...x0|1〉

)
|xn−1〉 H V1 · · · Vn−2 Vn−1

1√
2

(
|0〉+ e2πi0.xn−1...x0|1〉

)
1In base 10, this corresponds to, e.g., 329·125/103 = (300·125+20·125+9·125)/103 = 3·12.5+2·1.25+9·.125



Note that there is one H and at most n− 1 controlled-V ’s for each qubit, so the number

of gates grows at most quadratically in n. Notice also that the expansion of xy/2n couples

the least significant |x0〉 to the most significant |yn−1〉, and so on, |xj〉 to |yn−1−j〉. The

output qubits in the above figure are drawn according to the usual convention that the most

significant qubit is at the top. To retain this convention as well for the input qubits, we

insert a permutation operator to reorder them appropriately (in a physical realization, this

is just a question of how the “wires” are connected to the gates). For the explicit case n = 4,

the above circuit diagram becomes

|x3〉

P

|x0〉 • • • H

|x2〉 |x1〉 • • H V1 1

22

∑
0≤y<24

e2πixy/2
4 |y〉

|x1〉 |x2〉 • H V1 V2

|x0〉 |x3〉 H V1 V2 V3
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