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2 Actually the surface code does not need to completely identify
errors; it is sufficient that it identifies errors or chains of errors
that are topologic i o _the actual errors, meaning
ny differences can be written as products of stabilizers.
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Repeated Quantum Error Detection in a Surface Code
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The realization of quantum error correction is an essential ingredient for reaching the full potential
of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits
can be redundantly encoded in a set of physical qubits. One such scalable approach is based on the
surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly
detecting any single error using seven superconducting qubits, four data qubits and three ancilla
qubits. Using high-fidelity ancilla-based stabilizer measurements we initialize the cardinal states of
the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for
errors using the stabilizer readout and observe that the logical quantum state is preserved with a
lifetime and coherence time longer than those of any of the constituent qubits when no errors are
detected. Our demonstration of error detection with its resulting enhancement of the conditioned
logical qubit coherence times in a 7-qubit surface code is an important step indicating a promising
route towards the realization of quantum error correction in the surface code.
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FIG. 2. Seven-qubit device. (a) False colored micrograph of the seven-qubit device used in this work. Transmon qubits are
shown in vellow, coupling resonators in cyvan, flux lines for single-qubit tuning and two-qubit gates in green, charge lines for
single-qubit drive in pink, the two feedlines for readout in purple, transmission line resonators for readout in red and Purcell
filters for each qubit in blue. (b) Enlarged view of the center qubit {A2) which connects to four neighboring qubits.




In the surface code, as in any stabilizer code, errors are
detected by observing changes in the stabilizer measure-
ment outcomes. Such syndromes are typically measured
by entangling the stabilizer operators with the state of
ancilla qubits, which are then projectively measured to
yield the stabilizer outcomes. The surface code consists of
a d x d grid of data qubits with d2—1 ancilla qubits, each
comnected to up to four data qubits [28]. The code can
detect d — 1 errors and correct up to |(d —1)/2] errors
per cycle of stabilizer measurements. In particular, the
stabilizers of the d = 2 surface code, see Fig. |1 are given

" A- i R~

Xp1Xp2Xp3Xpa, Zp1Zps3, Zp2Zps. (1)

For the code-distance d = 2, it is only possible to detect a
single error per round of stabilizer measurements and once
an error is detected, the error can not be unambiguously
identified, e.g. one would obtain the same syndrome
outcome for an X-error on D1 and on D3.
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Here, we use the following logical qubit operators

Z[,=Z[)12{)2. or
Xy =Xp1Xps, or

Zy = Zp3Zpa, (2)
X = Xp2Xpu, (3)

such that the code space in terms of the physical qubit
states is spanned by the logical qubit states 4_&1_
#

— 0, = (\0000>+\1111>) (@)

\/_
—v I, \/—(\0101} + [1010)). (5)
= X oo
To encode quantum information in the logical subspace,
we initialize the data qubits in a separable state, chosen
such that after a single cycle of stabilizer measurements
and conditioned on ancilla measurement outcomes being
[0), the data qubits are encoded into the target logical
qubit state. In this work, we demonstrate this probabilis-
tic_preparation scheme for the logical states |0),, |1
l+), = (0), +1),)/v2)and
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FIG. 1. Seven qubit surface code. (a) The surface code consists of a two-dimensional array of qubits. Here the data qubits
are shown in red an the ancilla qubits for measuring X-type (Z-type) stabilizers in blue (green). The smallest surface code
consists of seven qubits indicated by the data qubits D1-D4 and the ancilla qubits A1-A3. (b) Gate sequence for quantum error
detection using the seven qubit surface code. Details of the gate sequence are discussed in the main text.
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FIG. 5. Repeated quantum error detection. The expectation
values of (a) the logical Zp operator and (b) the logical X,
operator as a function of N, the number of stabilizer mea-
surement cycles. The expectations values are shown for the
prepared |0), (blue), |1}, (green), |[+), (brown) and |-),
(purple) states. The solid lines indicate the corresponding
values obtained from master equation simulations. Also shown
(dashed lines, right axis) are the (a) qubit decay of the |1)-
state with the best measured T: value and (b) the physical
qubit decay of the |+)-state with the best measured T3 value.
(e) Total success probability ps for detecting no errors during
N cycles of stabilizer measurements for the |0), data shown
in (a) and the corresponding values from numerical simula-
tions. (d) Probability of observing k ancilla qubits in the |1)
state for each measurement cycle and conditioned on having
detected no error in any of the previous N —1 cycles. The data
corresponds to the initial |0), state presented in (a).
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