One way to factor 15

The group of integers relatively prime to $15, G_{15}=\{1,2,4,7,8,11,13,14\}$, has 3 elements of order 2: $(4,11,14)$, and 4 elements of order $4:(2,7,8,13)$.
Note that $7^{x} \bmod 15=1,7,4,13,1, \ldots$, and $8^{x} \bmod 15=1,8,4,2,1, \ldots$.
To factor $N=15$, we need to pick some number b relatively prime to 15 , and find the period of $f(x)=b^{x} \bmod 15$. We pick $b=7$ so that $f(x)=7^{x} \bmod 15$, and implement

$$
\mathbf{U}_{f} \mathbf{H}^{\otimes n}|0\rangle=\frac{1}{2^{n / 2}} \sum_{0 \leq x<2^{n}}|x\rangle_{n}|f(x)\rangle_{n_{0}}
$$

For $N=15$, the first n_{0} such that $2^{n_{0}}>N$ is $n_{0}=4$, so by the general prescription we use $n=2 n_{0}=8$ input qubits, and hence input states range from 0 to $2^{n}-1=255$.

Suppose we measure the output qubits in the state $|f(3)\rangle=|13\rangle .64$ values of x in the range $0-255$ map to 13 , so the overall state is left as

$$
\left(\sum_{0 \leq x<2^{n}} \gamma_{x}|x\rangle\right)|13\rangle=\frac{1}{8}(|3\rangle+|7\rangle+|11\rangle+\ldots+|255\rangle)|13\rangle .
$$

The amplitudes of the input bits are non-zero only for $x=3 \bmod 4$, i.e., $\gamma_{x}=$ $(1 / 8) \delta_{x, 4 k+3}$. As always, the result of the quantum Fourier transform on the state is a classical Fourier transform of the amplitudes, $\mathbf{U}_{\mathrm{FT}} \sum_{x=0}^{2^{n}-1} \gamma_{x}|x\rangle=\sum_{y=0}^{2^{n}-1} \tilde{\gamma}_{y}|y\rangle$, where

$$
\tilde{\gamma}_{y}=\frac{1}{2^{n / 2}} \sum_{0 \leq x<2^{n}} \mathrm{e}^{2 \pi i x y / 2^{n}} \gamma_{x}=\frac{1}{16} \sum_{k=0}^{63} \mathrm{e}^{2 \pi i(4 k+3) y / 256} \frac{1}{8}=\frac{1}{128} \mathrm{e}^{2 \pi i 3 y / 256} \sum_{k=0}^{63} \mathrm{e}^{2 \pi i(4 k) y / 256}
$$

This is non-zero only when $2 \pi 4 y / 256=2 \pi y / 64$ is equal to an integer multiple of 2π, hence only the values $y=0,64,128,192$ will be measured, each with probability $(64 / 128)^{2}=1 / 4$.

In general if the original function $f(x)$, and hence the amplitudes γ_{x}, execute many periods r within the range from 0 to $2^{n}-1$, then the Fourier transform $\tilde{\gamma}_{y}$ will be appreciable only near integral multiples of $2^{n} / r$, and the measured y being close to some $j \cdot 2^{n} / r$ can be used to infer the original period r. Suppose we measure $y=64$. In this case, r happens to divide 2^{n} (because p and q are of the form $2^{m}+1$), so we learn directly from $64=j \cdot 256 / r$ that r is a multiple of $256 / 64=4$, and can check that $7^{4}=1 \bmod 15$, so $r=4$.
(Had we measured $y=128$, we would have inferred that r is a multiple of $256 / 128=2$, and so checked 7^{2} then 7^{4} and concluded that $r=4$; and had we measured $y=192$, we'd learn that r is a multiple of $256 / 192=4 / 3$, and the first integer multiple is again $r=4$.)

To finish factoring 15 , recall that $0=7^{4}-1=\left(7^{2}-1\right)\left(7^{2}+1\right) \bmod 15$, then note that $7^{2}-1=48=3 \bmod 15$, and $7^{2}+1=50=5 \bmod 15$, determine (via Euclidean algorithm) that $\operatorname{gcd}(15,3)=3$ and $\operatorname{gcd}(15,5)=5$, and hence that $15=3 \cdot 5$.

