Bernstein–Vazirani ’93 (p.52), \(f(x) = a \cdot x \equiv \oplus_i a_i x_i \), factor of \(n \) speedup to determine \(a \)

Deutsch ’92 (p.44), factor of 2 speedup to determine whether or not \(1 \)bit→1bit function \(f(x) \) is constant

Simon ’94 (p.56), \(f(x) = f(x + a) \), measured \(y \) has \(a \cdot y = 0 \) (equivalently \(\sum_i a_i y_i = 0 \) mod2), exponential speedup (\(2^{n/2} \to O(n) \)) to determine \(a \)

Shor ’94 (p.70), \(f(x) = f(x + r) \), resulting \(y \) is measured with probability \(p(y) = \frac{1}{2^n m} \left| \sum_{k=0}^{m-1} e^{2\pi i k r y/2^n} \right|^2 \), gives \(|y - 2^n/r| < 1/2 \) with \(p > .4 \), sufficient to determine period \(r \) via partial fraction expansion, exponential speedup (\(n2^n, \exp(n^{1/3}) \to O(n^3) \)).

(\(\text{Note: replaces } H^\otimes n |x \rangle = \frac{1}{2^{n/2}} \sum_{0 \leq y < 2^n} e^{i n x \cdot y} |y \rangle \) with \(U_{FT} |x \rangle = \frac{1}{2^{n/2}} \sum_{0 \leq y < 2^n} e^{2\pi i xy/2^n} |y \rangle \).)

Practical application is \(f(x) \equiv b^x \) mod\(N \), where \(b \equiv a^c \) mod\(N \) is an encrypted message, from which \(d' \), satisfying \(cd' \equiv 1 \) mod\(r \), can be calculated, and \(d' \) recovers unencrypted message \(a \equiv b^{d'} \) mod\(N \) (in contrast to using \(d \), with \(cd = 1 \) mod\((p - 1)(q - 1) \)), where \(N = pq \) and \(r \) divides \((p - 1)(q - 1) = |G_{pq}| \).

Grover ’96 (p.90), \(f(x) = 1 \) only for \((m) \) marked value(s) \(x = a \), uses “phase kickback” to express \(U_f \) in terms of \(V = 1 - 2|a\rangle\langle a| \) and \(W = 2|\phi\rangle\langle \phi| - 1 = H^\otimes n (2|0\rangle\langle 0| - 1) H^\otimes n \) is easily constructed. Applying \(\ell \approx \frac{2^{n/2}}{\sqrt{m}} \) times gives probability \(p(a) \approx 1 - O(m/2^n) \), for square-root speedup (\(2^n/m \to \sqrt{2^n/m} \)).