One way to factor 15

The group of integers relatively prime to 15, \(G_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\} \), has 3 elements of order 2: \((4, 11, 14) \), and 4 elements of order 4: \((2, 7, 8, 13) \). Note that \(7^x \mod 15 = 1, 7, 4, 13, 1, \ldots \), and \(8^x \mod 15 = 1, 8, 4, 2, 1, \ldots \).

To factor \(N = 15 \), we need to pick some number \(c \) relatively prime to 15, and find the period of \(f(x) = c^x \mod 15 \). We pick \(c = 7 \) so that \(f(x) = 7^x \mod 15 \), and implement

\[
U_f H^\otimes n |0\rangle = \frac{1}{2^n/2} \sum_{0 \leq x < 2^n} |x\rangle_n |f(x)\rangle_{n_0} .
\]

For \(N = 15 \), the first \(n_0 \) such that \(2^{n_0} > N \) is \(n_0 = 4 \), so by the general prescription we use \(n = 2n_0 = 8 \) input qubits, and hence input states range from 0 to \(2^8 - 1 = 255 \).

Suppose we measure the output qubits in the state \(|f(3)\rangle = |13\rangle \). 64 values of \(x \) in the range 0–255 map to 13, so the overall state is left as

\[
(\sum_{0 \leq x < 2^n} \gamma_x |x\rangle) |13\rangle = \frac{1}{8} (|3\rangle + |7\rangle + |11\rangle + \ldots + |255\rangle) |13\rangle .
\]

The amplitudes of the input bits are non-zero only for \(x = 3 \mod 4 \), i.e., \(\gamma_x = (1/8)\delta_{x,4k+3} \). As always, the result of the quantum Fourier transform on the state is a classical Fourier transform of the amplitudes, \(\mathbf{U}_{\text{FT}} \sum_{x=0}^{2^n-1} \gamma_x |x\rangle = \sum_{y=0}^{2^n-1} \tilde{\gamma}_y |y\rangle \), where

\[
\tilde{\gamma}_y = \frac{1}{2^{n/2}} \sum_{0 \leq x < 2^n} e^{2\pi i xy/2^n} \gamma_x = \frac{1}{16} \sum_{k=0}^{63} e^{2\pi i (4k+3)y/256} \frac{1}{8} = \frac{1}{128} e^{2\pi i 3y/256} \sum_{k=0}^{63} e^{2\pi i (4k)y/256} .
\]

This is non-zero only when \(2\pi 4y/256 = 2\pi y/64 \) is equal to an integer multiple of \(2\pi \), hence only the values \(y = 0, 64, 128, 192 \) will be measured, each with probability \((64/128)^2 = 1/4 \).

In general if the original function \(f(x) \), and hence the amplitudes \(\gamma_x \), execute many periods \(r \) within the range from 0 to \(2^n - 1 \), then the Fourier transform \(\tilde{\gamma}_y \) will be appreciable only near integral multiples of \(2^n/r \), and the measured \(y \) being close to some \(j \cdot 2^n/r \) can be used to infer the original period \(r \). Suppose we measure \(y = 64 \). In this case, \(r \) happens to divide \(2^n \) (because \(p \) and \(q \) are of the form \(2^m + 1 \)), so we learn directly from \(64 = j \cdot 256/r \) that \(r \) is a multiple of \(256/64 = 4 \), and can check that \(7^4 = 1 \mod 15 \), so \(r = 4 \).

(Had we measured \(y = 128 \), we would have inferred that \(r \) is a multiple of \(256/128 = 2 \), and so checked \(7^2 \) then \(7^4 \) and concluded that \(r = 4 \); and had we measured \(y = 192 \), we’d learn that \(r \) is a multiple of \(256/192 = 4/3 \), and the first integer multiple is again \(r = 4 \).)

To finish factoring 15, recall that \(0 = 7^4 - 1 = (7^2 - 1)(7^2 + 1) \mod 15 \), then note that \(7^2 - 1 = 48 = 3 \mod 15 \), and \(7^2 + 1 = 50 = 5 \mod 15 \), determine (via Euclidean algorithm) that \(\gcd(15,3)=3 \) and \(\gcd(15,5)=5 \), and hence that \(15 = 3 \cdot 5 \).

P. Ginsparg, Physics 4481-7681; CS 4812