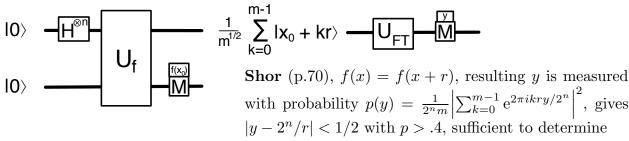
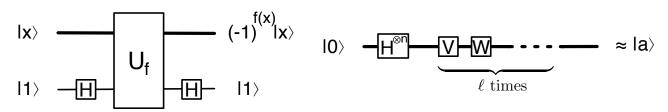


10>
$$H^{\otimes n}$$
 $\frac{1}{2^{1/2}}(|\mathbf{x}_0\rangle + |\mathbf{x}_0\oplus \mathbf{a}\rangle)$ $H^{\otimes n}$ \mathbf{M} Simon (p.56), $f(x) = f(x \oplus a)$, measured y has $a \cdot y = 0$ (equivalently $\sum_i a_i y_i = 0 \mod 2$), exponential speedup $(2^{n/2} \to O(n))$ to determine a



period r via partial fraction expansion, exponential speedup $(n2^n, \exp(n^{1/3}) \to O(n^3))$. (Note: replaces $\mathbf{H}^{\otimes n}|x\rangle = \frac{1}{2^{n/2}} \sum_{0 \le y < 2^n} \mathrm{e}^{i\pi x \cdot y}|y\rangle$ with $\mathbf{U}_{\mathrm{FT}}|x\rangle = \frac{1}{2^{n/2}} \sum_{0 \le y < 2^n} \mathrm{e}^{2\pi i x y / 2^n}|y\rangle$.) Practical application is $f(x) \equiv b^x \mod N$, where $b \equiv a^c \mod N$ is an encrypted message, from which d', satisfying $cd' \equiv 1 \mod r$, can be calculated, and d' recovers unencrypted message $a \equiv b^{d'} \mod N$ (in contrast to using d, with $cd = 1 \mod(p-1)(q-1)$, where N = pq and r divides $(p-1)(q-1) = |G_{pq}|$).



Grover (p.90), f(x) = 1 only for (m) marked value(s) x = a, uses "phase kickback" to express \mathbf{U}_f in terms of $\mathbf{V} = \mathbf{1} - 2|a\rangle\langle a|$, and $\mathbf{W} = 2|\phi\rangle\langle\phi| - \mathbf{1} = \mathbf{H}^{\otimes n} \left(2|0\rangle\langle 0| - \mathbf{1}\right)\mathbf{H}^{\otimes n}$ is easily constructed. Applying $\ell \approx \frac{\pi}{4} \frac{2^{n/2}}{\sqrt{m}}$ times gives probability $p(a) \approx 1 - O(m/2^n)$, for square-root speedup $(2^n/m \to \sqrt{2^n/m})$.