2-5 Resolve the forces perpendicular and parallel to the plane. In the direction
perpendicular to the plane, (upward direction taken positive) $\mathrm{F}_{\text {net }}=0=N-m g \cos \theta$. In the direction parallel to the plane (up the plane taken as positive) the frictional force, $f_{s}-m g \sin \theta=0$. Solving we see that $f_{s}=m g \sin \theta$. Answer (F) is correct. If you are confused about this, work the whole problem through. The frictional force $f_{s} \leq \mu_{s} N$ $=\mu_{s} m g \cos \theta$. Now substitute for $f_{s}=m g \sin \theta$, we get that $\tan \theta \leq \mu_{s .}$.

