2-13 Take the origin as being the original point of release of the arrow from the bow. Thus we know that $\Delta \mathrm{y}=-18[\mathrm{~m}]$. Because there is no acceleration in the x direction, we know that the x component of the velocity of the arrow is unchanged during the motion. Thus $\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{0 \mathrm{x}}=55[\mathrm{~m} / \mathrm{s}] \cos 25^{\circ}=49.8[\mathrm{~m} / \mathrm{s}]$. The y component of the final velocity of the arrow, $\mathrm{v}_{\mathrm{y}}=-55[\mathrm{~m} / \mathrm{s}] \sin 25^{\circ}=-23.2[\mathrm{~m} / \mathrm{s}]$ with the - sign signifying that the arrow's velocity is downward. Now we can use the relation $\mathrm{v}_{\mathrm{y}}{ }^{2}=\mathrm{v}_{0 \mathrm{y}}{ }^{2}+2 \mathrm{a} \Delta \mathrm{y}$ Thus $\left.\mathrm{v}_{0 \mathrm{y}}=\sqrt{ }\left\{\mathrm{v}_{\mathrm{y}}\right)^{2}-2 \times\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times(-18[\mathrm{~m}])\right\}=\sqrt{ }\{-23.2[\mathrm{~m} / \mathrm{s}])^{2}-2 \times\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \times$ $(-18[\mathrm{~m}])\}=13.6 \mathrm{~m} / \mathrm{s}$. Note we cannot say whether the arrow was fired with an upward component or a downward component to the vertical velocity. The angle with respect to the horizontal is given by $\theta=\tan ^{-1}\left(\mathrm{v}_{\mathrm{y}} / \mathrm{v}_{\mathrm{x}}\right)=\tan ^{-1}(13.6[\mathrm{~m} / \mathrm{s}]) /(49.8[\mathrm{~m} / \mathrm{s}])$ $=15^{\circ}$ with respect to the horizontal. The initial speed $v=\sqrt{ }\left\{\left(\mathrm{v}_{0 \mathrm{x}}\right)^{2}+\left(\mathrm{v}_{0 \mathrm{y}}\right)^{2}\right\}=$ $\sqrt{ }\left\{(49.8[\mathrm{~m} / \mathrm{s}])^{2}+(13.6[\mathrm{~m} / \mathrm{s}])^{2}\right\}=52[\mathrm{~m} / \mathrm{s}]$. Thus the correct choice is (C).

