2-11 Since the acceleration is north, the velocity will gradually acquire a velocity in the North direction. The velocity component in the East direction will be unaffected by the acceleration. Thus if $\mathbf{v}=100[\mathrm{~m} / \mathrm{s}]=\sqrt{ }\left\{\left(\mathrm{v}_{\mathrm{x}}\right)^{2}+\left(\mathrm{v}_{\mathrm{y}}\right)^{2}\right\}$, then $\mathrm{v}_{\mathrm{y}}=\sqrt{ }\left\{(100[\mathrm{~m} / \mathrm{s}])^{2}-\right.$ $\left.\left(\mathrm{v}_{\mathrm{x}}\right)^{2}\right\}=\sqrt{ }\left\{(100[\mathrm{~m} / \mathrm{s}])^{2}-(60[\mathrm{~m} / \mathrm{s}])^{2}\right\}=80 \mathrm{~m} / \mathrm{s}$. From $v_{y}=v_{0 y}+a_{y} t=0+100\left[\mathrm{~m} / \mathrm{s}^{2}\right] \mathrm{t}$ we solve for $t=80 \mathrm{~m} / \mathrm{s} / 100 \mathrm{~m} / \mathrm{s}^{2}=0.8 \mathrm{~s}$. Thus (A) is correct.

