Inventory Control with Lost Sales and Lead Times

Zhi Liu & Wenchang Zhu

ORIE 6590 Spring 2021

Implementation and Validation

Implemented the environment using gym and validated using constant-order policy. The evaluation is done with 20 episodes of length 50000 each.

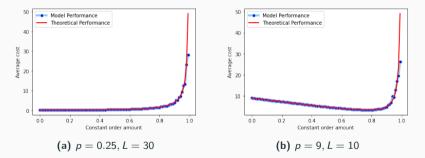


Figure 1: Performance of constant-order policy in our environment versus theoretical results.

After validation we used PPO from Stable Baselines 3 [Hill et al., 2018] package to train the policy.

PPO Parameterization: Network

- $\rightarrow\,$ Feature extraction: directly used the state space as input without any extraction.
- \rightarrow Policy network: set the weights of output layer to 0 and the bias to a moderately sized amount, e.g. 0.4 when p = 9 and 0.5 when p = 39, then added Gaussian noise and pass through squashing function. This mimics a near-constant-order policy.
- $\rightarrow\,$ Value network: used the default parameterization.

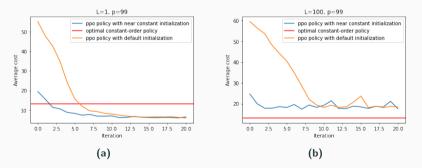


Figure 2: Comparison of default and custom initialization.

PPO Parameterization: Advantage Estimation

For small *L*, the default value gae_lambda= 0.95 gives good performance; when state space becomes larger, larger values yield better performance, so we chose gae_lambda= 0.99 when $L \in \{30, 50, 70, 100\}$.

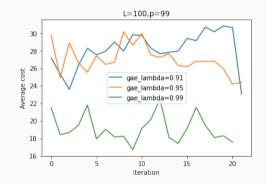


Figure 3: PPO performance with different gae_lambda

PPO Parameterization: Other Parameters and Training

- $\rightarrow\,$ Maximum action allowed: $\mathcal{A}=[0,20].$
- $\rightarrow \text{ n_envs: 4.}$
- \rightarrow learning_rate: 0.0003.
- \rightarrow n_steps: rollout length 2048.
- \rightarrow batch_size: 64.
- \rightarrow n_epochs: 10.

PPO Parameterization: Other Parameters and Training

- $\rightarrow\,$ Maximum action allowed: $\mathcal{A}=[0,20].$
- \rightarrow n_envs: 4.
- \rightarrow learning_rate: 0.0003.
- \rightarrow n_steps: rollout length 2048.
- \rightarrow batch_size: 64.
- \rightarrow n_epochs: 10.

- $\rightarrow\,$ Trained using PPO for 20 iterations to balance performance and runtime.
- $\rightarrow\,$ Evaluated policy after each iteration, and chose the policy with the best performance in terms of average cost.
- \rightarrow Repeated for each combination of *p* and *L* to obtain the results.

Actions from Resulting Policies

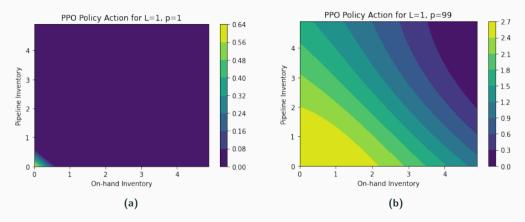


Figure 4: Action taken by trained policies under different model parameters.

Results: Compared with Default PPO Parameterization

C(const_order)/C(PPO)	L=1	L=4	L=10	L=20	L=30	L=50	L=70	L=100
p=0.25	0.92651	0.93007	0.92678	0.93586	0.93465	0.91137	0.90932	0.91685
p=1	1.00970	0.97611	0.95648	0.89441	0.82767	0.82281	0.80145	0.78845
p=4	1.14217	1.03615	1.00781	0.93620	0.79672	0.74644	0.71561	0.70126
p=9	1.26952	1.13438	1.02028	0.94697	0.82723	0.73339	0.71735	0.65570
p=39	1.83206	1.46433	1.22145	1.02358	0.80260	0.70389	0.57001	0.34879
p=99	2.49023	1.95434	1.43221	1.10200	0.79454	0.66899	0.39838	0.42888

(a) Results from default method

C(const_order)/C(PPO)	L=1	L=4	L=10	L=20	L=30	L=50	L=70	L=100
p=0.25	1.00368	1.00124	0.99923	0.98822	0.90195	0.88395	0.83419	0.85435
p=1	1.00970	1.00112	1.00050	0.99501	0.82632	0.83170	0.79193	0.77658
p=4	1.09048	1.04100	1.00175	0.97143	0.81546	0.81599	0.77624	0.79345
p=9	1.23925	1.13170	1.06793	1.00547	0.82239	0.79777	0.77362	0.77989
p=39	1.83981	1.46979	1.22424	1.17589	0.84864	0.78660	0.77462	0.76134
p=99	2.48444	2.30920	1.45911	1.13117	0.91039	0.81862	0.75929	0.78665

(b) Results from modified method

Figure 5: Comparison of results with default PPO parameterization.

C(const_order)/C(PPO)	L=1	L=4	L=10	L=20	L=30	L=50	L=70	L=100
p=0.25	1.00368	1.00124	0.99923	0.98822	0.90195	0.88395	0.83419	0.85435
p=1	1.00970	1.00112	1.00050	0.99501	0.82632	0.83170	0.79193	0.77658
p=4	1.09048	1.04100	1.00175	0.97143	0.81546	0.81599	0.77624	0.79345
p=9	1.23925	1.13170	1.06793	1.00547	0.82239	0.79777	0.77362	0.77989
p=39	1.83981	1.46979	1.22424	1.17589	0.84864	0.78660	0.77462	0.76134
p=99	2.48444	2.30920	1.45911	1.13117	0.91039	0.81862	0.75929	0.78665

(a) Results from our method

			L = 1	L = 4	L = 10	L = 20	L = 30	L = 50	L = 70	L = 100
р	=	1/4	1.000732	0.998664	0.979373	0.957875	0.967347	0.906137	0.909529	0.910072
р	=	1	1.012899	0.995453	0.996600	0.999953	1.001167	0.814216	0.976300	0.904669
р	=	4	1.110758	1.026892	1.003398	0.970293	0.993897	0.997304	0.992948	0.992391
р	=	9	1.258596	1.079733	1.027929	0.950493	0.966457	0.990411	0.968652	0.944635
р	=	39	1.777229	1.407220	1.205311	1.064118	0.870776	0.942677	0.955548	0.909879
р	=	99	2.392048	1.823024	1.471593	1.271550	1.139031	0.992178	0.927584	0.936422

(b) Results from the other group's method

Figure 6: Comparison of results with the other group.

When lead time is not large, we can use PPO to decide a policy. However, when lead time becomes larger, it might be better to apply constant-order policies, which require less computation yet give lower costs than PPO.

- Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y. (2018).
 - Stable baselines.

https://github.com/hill-a/stable-baselines.