
Inventory Control with Lost Sales and Lead Times

Zhi Liu & Wenchang Zhu

ORIE 6590 Spring 2021



Implementation and Validation

Implemented the environment using gym and validated using constant-order policy. The

evaluation is done with 20 episodes of length 50000 each.

(a) p = 0.25, L = 30 (b) p = 9, L = 10

Figure 1: Performance of constant-order policy in our environment versus theoretical results.

After validation we used PPO from Stable Baselines 3 [Hill et al., 2018] package to train the

policy. 1



PPO Parameterization: Network

→ Feature extraction: directly used the state space as input without any extraction.

→ Policy network: set the weights of output layer to 0 and the bias to a moderately sized

amount, e.g. 0.4 when p = 9 and 0.5 when p = 39, then added Gaussian noise and pass

through squashing function. This mimics a near-constant-order policy.

→ Value network: used the default parameterization.

(a) (b)

Figure 2: Comparison of default and custom initialization. 2



PPO Parameterization: Advantage Estimation

For small L, the default value gae lambda= 0.95 gives good performance; when state space

becomes larger, larger values yield better performance, so we chose gae lambda= 0.99 when

L ∈ {30, 50, 70, 100}.

Figure 3: PPO performance with different gae lambda

3



PPO Parameterization: Other Parameters and Training

→ Maximum action allowed: A = [0, 20].

→ n envs: 4.

→ learning rate: 0.0003.

→ n steps: rollout length 2048.

→ batch size: 64.

→ n epochs: 10.

→ Trained using PPO for 20 iterations to balance performance and runtime.

→ Evaluated policy after each iteration, and chose the policy with the best performance in

terms of average cost.

→ Repeated for each combination of p and L to obtain the results.

4



PPO Parameterization: Other Parameters and Training

→ Maximum action allowed: A = [0, 20].

→ n envs: 4.

→ learning rate: 0.0003.

→ n steps: rollout length 2048.

→ batch size: 64.

→ n epochs: 10.

→ Trained using PPO for 20 iterations to balance performance and runtime.

→ Evaluated policy after each iteration, and chose the policy with the best performance in

terms of average cost.

→ Repeated for each combination of p and L to obtain the results.

4



Actions from Resulting Policies

(a) (b)

Figure 4: Action taken by trained policies under different model parameters.

5



Results: Compared with Default PPO Parameterization

(a) Results from default method

(b) Results from modified method

Figure 5: Comparison of results with default PPO parameterization.

6



Results

(a) Results from our method

(b) Results from the other group’s method

Figure 6: Comparison of results with the other group.

7



Conclusions and Guidelines

When lead time is not large, we can use PPO to decide a policy. However, when lead time

becomes larger, it might be better to apply constant-order policies, which require less

computation yet give lower costs than PPO.

8



References i

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P.,

Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., and

Wu, Y. (2018).

Stable baselines.

https://github.com/hill-a/stable-baselines.

9

https://github.com/hill-a/stable-baselines

