
ORIE6590 Final Report

Wangwei Wu, Yucheng Chen

May 2021

1 Introduction
Nowadays, ride-sharing platforms are playing more and more important roles in
transportation all around the world. Compared to the traditional ride-hailing
service providers, like taxi companies, those emerging ride-sharing platforms,
such as Uber, Lyft, Didi Chuxing, and etc., have richer information collected from
passengers and drivers. The huge amount of data enables the central planner of
a platform to more precisely balance trip requests and idle drivers so as to create
higher trip matching efficiency and gross merchandise revenue (GMV). However,
the large-scale prompt-up dispatching and routing problem brings computational
challenges to the central planner. Recently, Reinforcement learning (RL) shows
its strength in tackling the challenges in the ride-sharing platform use cases
and there are several walks of articles in this avenue illustrating their proposed
algorithms in their corresponding settings.

In [1], the authors considered a Markov decision process (MDP) model of a
ride-hailing service system, framing it as a reinforcement learning (RL) problem.
The simultaneous control of many agents (cars) presents a challenge for the MDP
optimization because the action space grows exponentially with the number of
cars. They proposed a special decomposition for the MDP actions by sequentially
assigning tasks to the drivers. This project implemented the solutions proposed
in this paper and compared the results claimed in the paper and the results of
our implemented solutions.

2 Jointly dispatching with empty-routing prob-
lem

In this section we describe our model of the ride-hailing service and transportation
network, following [1]. The service consists of a centralized planner, passengers
requesting rides, and a fixed number of geographically distributed agents (cars).
In the following, we will briefly introduce the problem settings, the proposed
policy proximal optimization (PPO) algorithm in [1], and several numerical
experiments with different PPO schemes.

1



2.1 Problem definition
The transportation network consists of N cars distributed across a service
territory divided into R regions. For ease of exposition, we assume that each
working day (“episode”) of the ride-hailing service starts at the same time and lasts
forH minutes. We assume that the number of passenger arrivals at region o in the
t-th minute (i.e., t minutes elapsed since the start of the working day) is a Poisson
random variable with mean λo(t),∀o = 1, . . . , R, t = 1, . . . ,H. Upon arrival at
region o, a passenger travels to region d with probability that depends on time
t, origin region o, and destination region d: Pod(t), o, d = 1, . . . , R, t = 1, . . . ,H.
After a trip from region o to d has been initiated, its duration is deterministic
and equals to τod(t), o, d = 1, . . . , R, t = 1, . . . ,H. In addition, patience time
denotes a new passenger’s maximum waiting time for a car. We assume that
each passenger has a deterministic patience time and we fix it as equal to L
minutes. We assume that the centralized planner knows the patience time.

In real time, the centralized planner receives ride requests, observes the
location and activity of each car in the system, and considers three types of
tasks for the available cars: (1) car-passenger matching, (2) empty-car routing,
and (3) “do nothing” (a special type of empty-car routing). We assume that each
passenger requires an immediate response to a request within the first decision
epoch. If the centralized planner assigns a matching between a passenger and an
available car, we assume the passenger has to accept the matching. A passenger
who is not matched with a car in the first decision epoch leaves the system.

The state space SΣ of the MDP includes states st = [set , s
c
t , s

p
t ], such that

each state consists of three components: current epoch st := t, cars status sct ,
and passengers status spt .

At each epoch t, the centralized planner observes the system state st, and
makes a decision at that should address all It available cars, where It :=∑R
o=1

∑L
η=0 s

c
t(o, η) and sct(o, η) is the number of cars in the system whose final

destination region is o, and the total remaining travel time (“distance”) to the
destination is equal to η.

We let AΣ denote the action space of the MDP. We propose to decompose
every decision at ∈ AΣ into a sequence of “atomic actions”, each addressing a
single available car, to overcome the challenge of the large action space. We let
A denote the atomic action space. We note that A = {(o, d)}Ro,d=1.

We call the sequential generation of atomic actions a “sequential decision
making process” (SDM process). We let st,i denote a state of the SDM process
after i1 steps, for each decision epoch t = 1, . . . ,H. Given an action (o, d), the
agent will assign the car closet to origin o to a passenger trip from o to d among
the cars heading to o within L time steps. If there is no passenger trip from o to
d, then we let a car idling at o do empty-routing to d or let a car heading to o
do nothing. Any passenger trips not fulfilled with It sequential decisions will
disappear.

We consider the fulfill rates as the total reward for this finite horizon problem.
That is, each matched passenger trip brings the system reward 1, otherwise, the
reward is 0.

2



2.2 Algorithms
In the following numerical results, we tried the PPO algorithm proposed in [1]:

Algorithm 1 PPO
Result: policy πθJ

1: Initialize policy function 0 and value function approximator Vψ−1

2: for j = 1, · · · , J do
3:

Run policy πθj−1
for K episodes and collect dataset (1)

4: Construct Monte-Carlo estimates of the value function Vθj−1
following (2)

5: Update function approximator Vψ minimizing (3)
6: Estimate advantage functions Â(s, a) by (5)
7: Maximize surrogate objective function (4) w.r.t. θ and update θj
8:

D
(K)
ξ := {((st,1,k, at,1,k, Â(st,1,k, at,1,k)), ..., (st,It,k,k, at,It,k,k, Â(st,It,k,k, at,It,k,k)))Ht=1}Kk=1

(1)

V̂t,i,k =

It,k∑
j=i

c(st,j,k, at,j,k) +

H∑
l=t+1

Il,k∑
j=1

c(sl,j,k, al,j,k) (2)

K∑
k=1

H∑
t=1

It,k∑
i=1

∥∥∥Vψ(st,i,k)− V̂t,i,k∥∥∥2

(3)

L̂(θ, ξ,D
(K)
ξ ) :=

1

K

K∑
k=1

[

H∑
t=1

It,k∑
i=1

min(rθ,ξ(st,i,k, at,i,k)Âξ(st,i,k, at,i,k),

clip(rθ,ξ(st,i,k, at,i,k), 1− ε, 1 + ε)Âξ(st,i,k, at,i,k))]

(4)

Â(st,i,k, at,i,k) =

{
c(st,i,k, at,i,k) + Vψ(st,i+1,k)− Vψ(st,i,k) if i 6= It,k

c(st,i,k, at,i,k) + Vψ(st+1,1,k)− Vψ(st,i,k) otherwise
(5)

2.3 Numerical results
We implemented three numerical experiments with different hyperparameter
values and different versions of algorithms. Firstly, we will illustrates the results
of recreating experiments done by [1], we adopted the same learning architecture
and hyperparameters.

3



Figure 1: Fulfill rate with empty routing (sln 1)

This solution (sln1) as shown in Fig. 1 is implemented exactly as described
in the paper [1]. The performance is not as good as demonstrated in the paper.
Particularly, the passenger order fulfill rate doesn’t increase significantly as the
training goes. The problems we encountered include: 1). the training process
was very slow: we simulated the data from 15 20 days for training and the time
for one epoch training took up to 1 hour and a half; 2). our computer memory
can only store simulated data up to 30 days, and we suspected that not using
enough data to train the networks might be one of the reasons that causes this
outcome; 3). it was too time consuming to tuning the hyperparameters.

4



Figure 2: Fulfill rate with empty routing (sln 2)

This solution (sln2) as shown in Fig. 2 is implemented exactly as described
in the paper [1] and the parameters are exactly the same as those in the paper,
except that we were not able to store the training data for 300 days. The
performance is not as good as demonstrated in the paper as well.

3 Problem without the complexity of empty-routing
actions

In this section, we consider a similar problems setting without the added com-
plexity in action space about empty routing. For each atomic action defined
in the previous section, “empty-routing” is not allowed. Particularly, For each
feasible car heading to or idling at o with an assigned action (o, d), it will be
matched with a passenger trip if exists or “do nothing” if no passengers left.

5



3.1 Numerical results
In this setting, we still used the same PPO algorithm 1. Even though we don’t
have enough time to present the numerical results in this report, we will try to
present those in our presentation and later updated versions.

References
[1] Jiekun Feng, Mark O. Gluzman, and J. Dai. Scalable deep reinforcement

learning for ride-hailing. ArXiv, abs/2009.14679, 2020.

6


	Introduction
	Jointly dispatching with empty-routing problem
	Problem definition
	Algorithms
	Numerical results

	Problem without the complexity of empty-routing actions
	Numerical results


