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Setup

I Two suppliers:

Regular R Express E
Lead time Lr Le

Cost cr ce
I Assume Lr > Le + 1 and cr < ce.

I Demands: i.i.d. nonnegative {Dt, t ≥ 0}.
I Inventory: It.

I Pipeline vectors: qrt =
{
qrt−i, i ∈ [Lr]

}
,qet =

{
qet−i, i ∈ [Le]

}
denote orders placed but

not yet delivered with R and E.

I Unit holding and backorder costs are h > 0 and b > 0.
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Dynamics

At time t ≥ 0, a sequence of events happen in the following order.

1. On-hand inventory It is observed.

2. Policy π places the new orders qrt and qet (action).

3. New inventory qrt−Lr
+ qet−Le

is delivered and added to It.

4. Demand Dt is realized. Update inventory and pipeline vectors (state) according to

It+1 = It + qrt−Lr
+ qet−Le

−Dt,

qrt+1 =
(
qrt−Lr+1, . . . , q

r
t−1, q

r
t

)
,

qet+1 =
(
qet−Le+1, . . . , q

e
t−1, q

e
t

)
.

5. Cost is incurred as
Ct = crq

r
t + ceq

e
t + hI+t+1 + bI−t+1.

Minimize long-run average cost: C(π) = lim supT→∞
1
T

∑T−1
t=0 E [Cπt ] .
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Tailored Base-Surge (TBS) Policy

I A TBS policy πr,S orders r products from R and follows an order-up-to rule from E,
where we maintain the express inventory position above S,

qrt = r

qet = max
(

0, S − Ît
)
,

with Ît := It +
∑t−1
i=t−Le

qei +
∑t−Lr+Le

i=t−Lr
qri .

I Empirically, TBS performs well with an increase in the lead time difference. (Klosterhalfen
et al. 2011)

I Theoretically, TBS is asymptotically optimal as Lr increases when Le is fixed. (Xin &
Goldberg. 2018)
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Advantage Actor-Critic (A2C) for Discounted Reward

I Discount factor: γ = 0.99.

I Actor approximates policy function πθ while critic approximates value function Vv.

I In each episode, obtain rollout trajectory {(st, at, rt, st+1)}T+n
t=T . Minimize loss

L = Lactor +W · Lcritic , with

Lactor = −
∑n
t=0 log πθ (sT+t, aT+t)

(
n∑
i=t

γi−trT+i − Vv (sT+t)

)
︸ ︷︷ ︸

Â(sT+t,aT+t)

,

Lcritic =
∑n
t=0

[ n∑
i=t

γi−trT+i︸ ︷︷ ︸
Vtarget(sT+t)

−Vv (sT+t)
]2
.

Advantage Actor-Critic Algorithm 7



Implementation Details

I Share parameters: one neural network that has one softmax output for the policy and one
linear output for the value function, sharing non-output layers.

I Initialization: supervised learning to make the NN policy close to an arbitrary TBS policy.

I Long rollout trajectory (1000).

I Tune W to control relative learning speed of the actor and critic: L = Lactor +W ·Lcritic .

I Minimize loss using ADAM.
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Performance

Demands D ∼ Poisson(λ); fix Le = 1, cr = 100, ce = 105, and h = 1. 100 simulations.

(∆L, b) (2, 99) (10, 99) (2, 19) (10, 19)
TBS −515.31± 3.55 −516.67± 3.14 −515.21± 3.48 −516.48± 3.29

initial NN −572.23± 40.91 −579.88± 41.55 −539.78± 3.25 −659.57± 3.52
NN −539.58± 3.66 −547.30± 5.30 −520.80± 3.15 −553.76± 3.10

Table: λ = 5.

(∆L, b) (2, 19) (10, 19)
TBS −1016.55± 7.30 −1019.55± 6.73

initial NN −1095.06± 67.06 −1116.21± 60.64
NN −1047.78± 4.92 −1040.43± 5.24

Table: λ = 10.
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Output NN Policy vs. Optimal TBS Policy (λ,∆L, b) = (10, 10, 19)
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Learning Curve (λ,∆L, b) = (10, 10, 19)
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