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Setup

» Two suppliers:

Regular R | Express E
Lead time L, L.

Cost Cr Ce

Assume L, > L.+ 1 and ¢, < c..
Demands: i.i.d. nonnegative {D;, ¢ > 0}.
Inventory: I;.
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Pipeline vectors: qf = {q{ﬂ.,i € [Lr]} Qs = {qfﬂ»,z’ € [Le]} denote orders placed but
not yet delivered with R and E.

Unit holding and backorder costs are h > 0 and b > 0.
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Dynamics

At time t > 0, a sequence of events happen in the following order.
1. On-hand inventory I; is observed.
2. Policy 7 places the new orders ¢} and ¢f (action).
3. New inventory q;; +q;_,_ is delivered and added to ;.
4

. Demand D is realized. Update inventory and pipeline vectors (state) according to
Liywv=1i+q 1, +qi 1. — Dy,

r _ r r r
Qi1 = (qt—Lr+1a s Qi q, qt) s

€ e € €
Qi1 = (qt—Le-Ha .- -aQt—laQt) .

5. Cost is incurred as
Ci = crqp + ceqr + h[t‘:_l + bl .

Minimize long-run average cost: C(m) = limsup;_, ., = ZtT;()l E[CT].
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Tailored Base-Surge (TBS) Policy

> A TBS policy 7, g orders 1 products from R and follows an order-up-to rule from E,
where we maintain the express inventory position above S,

@ =T
gf = max (O,S—It),

WIthIt:_It—’—Zthg 1+Z: tl”;L :

» Empirically, TBS performs well with an increase in the lead time difference. (Klosterhalfen
et al. 2011)

» Theoretically, TBS is asymptotically optimal as L, increases when L. is fixed. (Xin &
Goldberg. 2018)
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Advantage Actor-Critic (A2C) for Discounted Reward

» Discount factor: v = 0.99.
» Actor approximates policy function 7y while critic approximates value function V.

> In each episode, obtain rollout trajectory {(st,at,rt,st+1)}tT;n. Minimize loss

L = Lactor +W - Leritic ,  with

n
Lactor - - Z?:O log o (3T+ta aTth) <Z ’ViitTT+i — VU (3T+t)> s
i=t

A(srye,ar4e)

Leritic = Y 10 [Z’)’i_trTﬂ‘ -V (ST+t)]2-
i—t

N
Viarget (ST +1)
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Implementation Details

» Share parameters: one neural network that has one softmax output for the policy and one
linear output for the value function, sharing non-output layers.

Policy function

Hidden layer Value function

Input layer
» Initialization: supervised learning to make the NN policy close to an arbitrary TBS policy.
> Long rollout trajectory (1000).
» Tune W to control relative learning speed of the actor and critic: L = Lactor + W+ Leritic -
» Minimize loss using ADAM.
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Performance

Demands D ~ Poisson(\); fix L, = 1, ¢, = 100, ¢, = 105, and h = 1. 100 simulations.

Empirical Results

(AL, b) (2, 99) (10, 99) (2, 19) (10, 19)
TBS —515.31 £ 3.55 —516.67 £+ 3.14 —515.21 +3.48 | —516.48 + 3.29
initial NN | —572.23 +40.91 | —579.88 +=41.55 | —539.78 +£3.25 | —659.57 £+ 3.52
NN —539.58 £ 3.66 —547.30 £5.30 —520.80 £3.15 | —553.76 & 3.10
Table: A = 5.
(AL, b) (2, 19) (107 19)
TBS —1016.55 £ 7.30 —1019.55 £ 6.73
initial NN | —1095.06 + 67.06 | —1116.21 4 60.64
NN —1047.78 4+ 4.92 —1040.43 £ 5.24
Table: A = 10.
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Output NN Policy vs. Optimal TBS Policy (\, AL,b) = (10,10, 19)
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Learning Curve (A, AL, b) = (10, 10, 19)
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