
A Reinforcement Learning Approach to
Dual-Sourcing Inventory Problem

(ORIE 6590 Final Project)

Tonghua Tian and Xumei Xi
School of Operations Research and Information Engineering

Cornell University
{tt543,xx269}@cornell.edu

May 2021

1 Introduction

It is common practice that companies depend on multiple suppliers for product ordering. We
focus on the model where we have a regular supplier and an express supplier. The regular
supplier provides a cheaper price point but takes longer to deliver, while the express supplier
has faster delivery at a higher expense. In our project, we examine the dual-sourcing inven-
tory system and implement a reinforcement learning algorithm to make prudent ordering
decisions. Please see the GitHub repo (github.com/xixumei1226/dual-sourcing-rl) for
more details.

1.1 MDP Formulation

In this subsection, we formally introduce the Markov decision process (MDP) formulation
of the problem. As in the work [XG18], suppose we have a regular supplier R, with a longer
lead time Lr and a lower cost cr, and an express supplier E, with a shorter lead time Le and
a higher cost ce. We assume Lr > Le + 1 and cr < ce. Demands are generated as an i.i.d.
sequence {Dt, t ≥ 0}, distributed as the nonnegative random variable D. Denote the unit
holding and backorder costs by h > 0 and b > 0, respectively. Let It denote the on-hand
inventory, and qrt = {qrt−i, i ∈ [Lr]}, qet = {qet−i, i ∈ [Le]} denote the pipeline vectors of orders
placed but not yet delivered with R and E at the start of period t, where qrt−i, q

e
t−i are the

orders placed at period t− i.
At period t, a sequence of events happen in the following order:

1. The on-hand inventory It is observed.

2. New orders qrt and qet are placed with R and E.

3. New inventory qrt−Lr + qet−Le is delivered and added to the on-hand inventory.

1

https://github.com/xixumei1226/dual-sourcing-rl
github.com/xixumei1226/dual-sourcing-rl

4. The demand Dt is realized; the inventory and pipeline vectors are updated.

5. Costs for period t are incurred.

Notice the on-hand inventory is updated according to

It+1 = It + qrt−Lr + qet−Le −Dt.

The pipeline vectors are updated according to

qrt+1 = (qrt−Lr+1, . . . , q
r
t−1, q

r
t),

qet+1 = (qet−Le+1, . . . , q
e
t−1, q

e
t).

Let Ct be the sum of the ordering cost and holding and backorder costs incurred at time
period t:

Ct = crq
r
t + ceq

e
t + hI+t+1 + bI−t+1.

Note that in [XG18], orders placed at period t are charged at period t + Le. Here we use a
different accounting method to simplify the notations for the corresponding MDP. This has
no effect on the problem considered.

An admissible policy π consists of a sequence of deterministic measurable functions
{fπt , t ≥ 0} from RLr+Le+1 to R2

+. Specifically, the new orders placed at period t are given
by (qrt , q

e
t) = fπt (qrt ,q

e
t , It). Let Π denote the family of all admissible policies. The current

cost under a policy π is denoted by Cπ
t . We aim to minimize the long-run average cost

C(π) = lim sup
T→∞

1

T

T−1∑
t=0

E[Cπ
t].

Assume the demands follow Poisson distribution: D ∼ Pois(λ), where λ > 0. Fur-
thermore, assume the orders can only take integer values. Then the above process can be
formulated as a discrete MDP. At period t, let st = (qrt ,q

e
t , It) be the state of the system,

and let at = (qrt , q
e
t) be the action taken. The state space S and action space A are given by

S = ZLr
+ × ZLe

+ × Z, A = Z2
+.

Note that Ct is a function of st+1 instead of st. So the reward of step t is actually received
at step t− 1:

rt = r(st, at) = −Ct−1 = −crqrt−1 − ceqet−1 − hI+t − bI−t .
Then we define the long-run average reward as

J(π) = lim sup
T→∞

1

T

T−1∑
t=0

E[rt+1|π]. (1)

Define the function g : RLr+Le+1 ×R2 → RLr+Le+1 as

g(x1, . . . , xLr , y1, . . . , yLe , z, a1, a2) = (x2, . . . , xLr , a1, y2, . . . , yLe , a2, z + x1 + y1).

Then
st+1 = g(st, at)− (0, . . . , 0, Dt).

Hence the transition probabilities are given by

P(st+1 = g(st, at)− (0, . . . , 0, k) | st, at) =
λke−λ

k!
, k = 0, 1,

2

1.2 Prior Works

In this subsection, we briefly review some prior works on the dual-sourcing inventory systems.
Researchers have been investigating the dual-sourcing problem for many years due to its
practicality as well as its intractability. Earlier works have already showed that when the
lead time difference is exactly one, order-up-to policies are optimal. However, once we step
into the regime where the lead time difference grows larger, such policies fall short. In
our project, we focus on the general case where the lead time difference is relatively large.
Over the years, people have developed various heuristic policies to better approximate the
optimum. The work [VSW08] proposed the idea of dual-index (DI) policies which have two
order-up-to levels for the two suppliers. Under such policies, we keep track of two inventory
positions and make orders in an effort to hold the corresponding inventory positions up to
certain levels. Another simple and intuitive policy is the tailored base-surge (TBS) policy
proposed in the work [AM10]. With a TBS policy, a constant order is placed at the regular
source in each period to meet a base level of demand, while the orders we place at the
express source follow an order-up-to rule to manage demand surges. As showed in the work
[KKM11], TBS policies are comparable to DI policies in practice, and outperform DI policies
for some problem instances, especially with an increase in the lead time difference. It has
also been prove theoretically in the paper [XG18] that when the lead time of the express
source is fixed, a simple TBS policy is asymptotically optimal as the lead time of the regular
source increases.

1.3 Project Goals

In this subsection, we state our goals for the project.

1. Develop practical reinforcement learning algorithm to approximate the optimal policy.

2. Compare our performance with heuristic policies like the TBS policy.

3. Gain insights by potentially analyzing the intrinsic structure within the output policy.

4. Acknowledge the challenges encountered and the limitation of our approach. Provide
possible future directions.

2 Actor-Critic Algorithm

To maximize the long-run average reward (1), we use the actor-critic framework. As pointed
out in the survey [GBLB12], actor-critic methods combine the advantages of actor-only and
critic-only methods. The basic idea is that an actor approximates the policy while a critic
estimates the value function, both using function approximation scheme. Note that since we
have a large state space, it is indeed suitable to use function approximation.

2.1 Natural Actor-Critic (NAC) for Long-Run Average Reward

In contrast to the regular policy gradient, natural gradient incorporates knowledge about
the curvature of the space into the gradient. The use of natural gradient can produce better

3

conditioning and is capable of further reducing variance in the gradient estimate. We present
the algorithm in the context of linear function approximation, in alignment with the paper
[BSGL09]. However, in our experiments, we use a neural network in lieu of a simple linear
function. The authors note that we do not find a proof of convergence for general neural
networks. Theoretical convergence is only guaranteed in the linear case.

The basic idea is that the value function parameters are updated using temporal difference
learning while the policy parameters are learned by stochastic gradient descent. Please see
Appendix A for a complete introduction and technical discussion on the NAC algorithm.

2.2 Advantage Actor-Critic (A2C) for Discounted Reward

The advantage actor-critic (A2C) method is a synchronous version of the asynchronous
advantage actor-critic (A3C) method proposed in the work [MBM+16]. It is widely used
in practice and various mainstream reinforcement learning packages support this algorithm.
We consider the discounted setting where we have a discount parameter γ ∈ (0, 1). The
discounted reward is defined as

J(π) = E

[
∞∑
t=0

γtrt+1

∣∣∣∣∣ s0, π
]
,

where the initial state s0 is either determined or random. For a policy π, define the state
value function V π(s) and the state-action value function Qπ(s, a) according to

V π(s) = E

[
∞∑
t=0

γtrt+1 | s0 = s, π

]
, ∀s ∈ S,

Qπ(s, a) = E

[
∞∑
t=0

γtrt+1 | s0 = s, a0 = a, π

]
, ∀(s, a) ∈ S ×A.

The advantage function is defined as

Aπ(s, a) = Qπ(s, a)− V π(s).

We parameterize the policy π with θ and value function V with v. Instead of constructing
two separate neural networks for the actor and the critic, we employ the idea of sharing some
parameters between them, as pointed out in the work [MBM+16]. Specifically, we use one
neural network that has one softmax output for the policy πθ and one linear output for the
value function Vv, sharing the same set of non-output layers.

In each learning episode, we simulate multiple steps of the environment, according to
the policy πθ from the last episode, to get n-step returns. Using n-step return instead of
one-step return is beneficial since it stabilizes the training process. Afterwards, we obtain
the rollout trajectory obtained as {(st, at, rt, st+1}T+nt=T . Meanwhile, we get the value function
estimate Vv, where v is also from the last episode. Then we minimize the combined loss from
the actor and the critic

L = Lactor +W · Lcritic, (2)

4

where W > 0 is a weight hyperparameter that controls the relative update speed. The loss
functions for the actor and critic are defined as

Lactor = −
n∑
t=0

log πθ(sT+t, aT+t)

(
n∑
i=t

γi−trT+i − Vv(sT+t)

)
, (3)

Lcritic =
n∑
t=0

(
n∑
i=t

γi−trT+i − Vv(sT+t)

)2

. (4)

Recall that by the policy gradient theorem, we have

∇J(π) =
1

1− γ
∑
s∈S

dπ,γ(s)
∑
a∈A

∇π(s, a)Aπ(s, a), (5)

where {dπ,γ(s), s ∈ S} represents the discounted future state distribution. We use the state
value function as the baseline to reduce variance in the policy gradient. The term inside the
parentheses in equation (3) serves as an estimate for the advantage function:

Â(sT+t, aT+t) =
n∑
i=t

γi−trT+i︸ ︷︷ ︸
Q̂(sT+t,aT+t)

−Vv(sT+t), t = 0, . . . , n.

In the above equation, we use the cumulative discounted reward from time T + t to T +n as
our approximation of the state-value function at (sT+t, aT+t). The approximation of the value
function is simply V̂ (sT+t) = Vv(sT+t). As a result, by treating Â(sT+t, aT+t) as a constant,
the negative gradient of Lactor is a stochastic version of the policy gradient multiplied by a
constant:

n∑
t=0

∇ log πθ(sT+t, aT+t)Â(sT+t, aT+t).

Note that we use the negative gradient here since we want to maximize the reward. The
critic loss Lcritic is the squared error of the form

n∑
t=0

[Vtarget(sT+t)− Vv(sT+t)]2 ,

where the labels Vtarget are defined as

Vtarget(sT+t) =
n∑
i=t

γi−trT+i, t = 0, . . . , n.

Namely, we use the rollout trajectory to get the target value via the true rewards from the
environment. We present the details of A2C in Algorithm 1.

3 Implementation and Results

In this section, we present our implementation details and empirical results.

5

Algorithm 1: Advantage Actor-Critic (A2C)

Input: Initial parameters.
Init: Initial state s0. T ← 1. t← 1.

1 while T ≤ Tmax do
2 tstart ← t.
3 while t− tstart ≤ tmax do
4 Draw action at ∼ πθt(st, ·).
5 Get reward rt.
6 Observe next state st+1 ∼ P (·|st, at).
7 T ← T + 1.
8 t← t+ 1.

9 end
10 R← V (st).
11 Lactor ← 0. Lcritic ← 0.
12 for i = t− 1, . . . , tstart do
13 R← γR + ri.
14 Lactor ← Lactor − log πθt(si, ai)(R− Vv(si)).
15 Lcritic ← Lcritic + (R− Vv(si))2.
16 end
17 L← Lactor +W · Lcritic.
18 Gradient descent step to minimize L.

19 end

3.1 NAC for Long-Run Average Reward

We first use NAC introduced in Algorithm 2. Please refer to NAC test for the code. Since we
are dealing with long-run average reward, random initialization is prone to failure. Hence we
first train the policy network using a known stable heuristic policy as the labels in supervised
learning. The policy we employ is the tailored base-surge (TBS) policy. A TBS policy πr,S
is characterized by two parameters r ∈ Z+ and S ∈ Z+. In each period, the policy always
orders r products from R and follows an order-up-to rule from E, where we maintain the
express inventory position above S. That is to say, for all time step t, we set

qrt = r,

qet = max
(

0, S − Ît
)
,

where Ît := It +
∑t−1

i=t−Le q
e
i +

∑t−Lr+Le
i=t−Lr qri is the so-called inventory position, which corre-

sponds to the net inventory at the start of period t plus all orders to be received in periods
t, . . . , t + Le. The optimal TBS policy can be computed by solving a convex program, as
showed in the paper [JSS15].

We use two separate neural networks for the actor and the critic, since we do not know how
to perform the natural gradient update if we only use one network. To stabilize the gradient,
we perform the average reward update and the TD update in Algorithm 2 for multiple steps
before updating the parameters. The final output policy produces similar average reward

6

https://github.com/xixumei1226/dual-sourcing-rl/blob/main/NAC_test.ipynb

as the initial policy. We observe that the algorithm is extremely sensitive to the choice
of step sizes. With large step sizes, the value function blows up in just a few episodes
since, as pointed out in the work [FHM18], the overestimation error occurs easily in function
approximation and it is detrimental to training. With small step sizes, the parameters seem
to oscillate around the initial point probably because the optimization landscape is too flat to
escape. In conclusion, the long-run average reward setting is challenging because of several
issues:

1. The assumption of the Markov chain being irreducible and aperiodic is hard to satisfy.

2. The value function is relative in the sense that its accuracy relies on the accuracy of
the estimate of the long-run average reward, making it highly unstable and extremely
difficult to learn.

3. We currently do not know how to adaptively tune the step sizes to boost learning.

We believe the method of using supervised learning to initialize provides a good starting
point. However, the step sizes proposed in the work [BSGL09] cannot yield much improve-
ment in our experiment. We suggest that finding a good way to adaptively update the step
sizes is crucial in this learning situation, which is left for future work.

3.2 A2C for Discounted Reward

Due to the difficulties discussed in the previous subsection, we turn to algorithms in the
discounted setting since the discount factor provides more stability. We implement A2C as
in Algorithm 1. Please refer to A2C test for the code. Similarly to what we did before, the
initial parameters of the neural network are obtained by supervised learning. Henceforth,
we call the policy yielded by our neural network the NN policy.

For numerical experiments, we consider the demand distribution D ∼ Pois(λ), where
λ ∈ {5, 10}. We fix the express lead time Le = 1, the costs cr = 100, ce = 105 and holding
cost h = 1, and vary the lead-time difference ∆L = Lr − Le ∈ {2, 10} and backorder cost
b ∈ {19, 99}. The discount factor is set as γ = 0.99. In every test case, we choose an
arbitrary sub-optimal TBS policy, and initialize the neural network based on it. After a
short period of stochastic gradient descent steps, the initial NN policy is sufficiently close to
the TBS policy of choice, which already gives a stable long-run average reward. We compare
the performance of the optimal TBS policy, the initial NN policy and the output NN policy
computed by A2C in Table 1 and Table 2. Each entry of the table records the mean and
standard deviation of the average rewards obtained in 100 simulations, with 5000 time steps
in each simulation. The results show that the initialization scheme often gives us a policy
with a high variance, and the A2C algorithm reduces the variance while also pushing the
average reward closer to the optimal TBS policy.

At each episode of A2C, we use ADAM to update the parameters of the neural network.
The default learning rate we use is 0.01. But when doing experiments, we found that
the learning rate 0.01 can sometimes make the algorithm highly unstable. Tuning it to
0.001, while resulting in a much slower convergence rate, can solve the problem. Another
hyperparameter that can largely affect the performance of A2C is the weight W of the

7

https://github.com/xixumei1226/dual-sourcing-rl/blob/main/A2C_test.ipynb

critic loss. We choose W ∈ {0.1, 1, 10} accordingly under different configurations of the
environment.

(∆L, b) (2, 99) (10, 99) (2, 19) (10, 19)
TBS −515.31± 3.55 −516.67± 3.14 −515.21± 3.48 −516.48± 3.29

initial NN −572.23± 40.91 −579.88± 41.55 −539.78± 3.25 −659.57± 3.52
NN −539.58± 3.66 −547.30± 5.30 −520.80± 3.15 −553.76± 3.10

Table 1: λ = 5.

(∆L, b) (2, 19) (10, 19)
TBS −1016.55± 7.30 −1019.55± 6.73

initial NN −1095.06± 67.06 −1116.21± 60.64
NN −1047.78± 4.92 −1040.43± 5.24

Table 2: λ = 10.

Finally, we present some visualizations under a specific setting: λ = 10, ∆L = 10 and
b = 19.

Figure 1: Learning curve obtained from A2C for the dual-sourcing inventory problem. The
blue dashed line shows the performance of the NN policy every 5 episodes. The orange solid
line shows the performance of the optimal TBS policy.

In Figure 1, we show the learning curve from our implementation of A2C, as the blue
dashed line. The variance of the policy is represented by the vertical bar. We also plot
the performance of the optimal TBS policy as the orange line. At first glance, the average

8

reward travels along a bizarre curve, on which it first dips down and then shoots up. Our
interpretation is that the algorithm first escapes a local minimizer, the initial point, and
then converges to a better local minimizer, the output. It is clear that the output NN policy
provides an average reward that is closer to the one using the optimal TBS policy, comparing
to the initial NN policy. Furthermore, the output NN policy has a much smaller variance
than the initial one. That is to say, our algorithm indeed improves upon the initial policy
and it has similar performance to the optimal TBS policy.

(a) Output NN policy

(b) Optimal TBS policy

Figure 2: Comparison of the output NN policy and the optimal TBS policy on the dual-
sourcing inventory problem. We excerpt a period [1300, 1500] from the simulation. The blue
line indicates changes in the inventory level while the orange and the green line represent the
actions taken, according to the two policies. Specifically, the orange line is the order placed
with the regular supplier at each time step and the green line is the order placed with the
express supplier.

In Figure 2, we show two plots depicting the states and actions made by the output NN
policy and the optimal TBS policy, respectively. In our problem, the state should include
the inventory level as well as the pipeline vector. We omit the pipeline vector for simplicity.
As introduced in Subsection 3.1, the TBS policy orders a fixed number of products from the
regular supplier at all time steps, which corresponds to the horizontal orange line in Figure

9

2b. The order placed with the express supplier acts as a regulating force to account for the
surge of the demands. In Figure 2b, the green line stays at 0 if the blue line is way above 0
and the green line soars up if the blue line is close to or below 0, which is exactly how TBS
works. When the inventory level is too high, we do not need to order more products. When
the inventory is almost up or when we have backorders, we must order more products from
the express supplier. The output NN policy has a slightly different dynamic. The two orders
placed with the regular supplier and the express one both adapt to the current inventory
level. When the inventory level is high, we order a small amount of product from the two
suppliers. When the inventory level is low or when we have backorders, we increase the orders
with both suppliers. The output NN policy seems to inherit some of the properties possessed
by the TBS policy, which is not surprising since our initialization is done by approximating a
TBS policy. The regular order has a base order of 6 while the express order has a base order
of 2. The surge in the demands is handled by both regular and express orders, as opposed
to only the express order in the TBS policy.

Appendices

A Natural Actor-Critic

Recall that the long-run average reward is

J(π) = lim sup
T→∞

1

T

T−1∑
t=0

E[rt+1|π].

We assume under any policy π, the MDP is irreducible and aperiodic. For a policy π, define
the state value function V π(s) and the state-action value function Qπ(s, a) according to

V π(s) = E

[
∞∑
t=0

(rt+1 − J(π)) | s0 = s, π

]
, ∀s ∈ S,

Qπ(s, a) = E

[
∞∑
t=0

(rt+1 − J(π)) | s0 = s, a0 = a, π

]
, ∀(s, a) ∈ S ×A,

which essentially calculate the expected differential reward. The advantage function is de-
fined as

Aπ(s, a) = Qπ(s, a)− V π(s).

We parameterize the value function to be V̂vt(s) = v>t fs with vt ∈ Rd2 , where fs ∈ Rd2

is the feature vector for state s. The critic learns the value function by using the temporal
difference (TD)

δt = rt+1 − Ĵt+1 + V̂st+1 − V̂st ,

where V̂si is an unbiased estimate of the value function in states si, i = t, t+ 1 and Ĵt+1 is an
unbiased estimate of the average reward. The average reward estimate is usually updated

10

according to

Ĵt+1 = Ĵt + ξt

(
rt+1 − Ĵt

)
= (1− ξt) Ĵt + ξtrt+1,

where ξt > 0 is the step size. We can show that the TD is an unbiased estimate of the
advantage function. Namely, we have

E[δt|st, at, π] = Aπ(st, at). (6)

Then we can update the parameter v as follows:

vt+1 = vt + αtδtfst ,

where αt > 0 is the step size for the critic.
We parameterize the policy π = πθ with θ ∈ Rd1 . The actor updates by following the

gradient direction. Assume the policy function π is C1-smooth in θ. Classic policy gradient
theorem says that

∇J(π) =
∑
s∈S

dπ(s)
∑
a∈A

∇π(s, a) (Qπ(s, a)− b(s)) , (7)

where dπ denotes the stationary distribution of the MDP under policy π and b is any baseline
function. The natural gradient ∇̃J(π) is obtained by multiplying the regular gradient ∇J(π)
by the inverse Fisher information matrix (FIM) of the policy,

∇̃J(π) = G(θ)−1∇J(π).

The FIM G(θ) has the expression

G(θ) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)∇ log π(s, a)∇ log π(s, a)>,

which is clearly positive definite. Unfortunately, we do not have access to the true action-
value function in the gradient formula (7). Nevertheless, we may use an approximation
instead. We form the linear approximation of the state-value function as Q̂π

w(s, a) = w>ψsa
where ψsa’s are the compatible features defined as ψsa = ∇ log π(s, a). Thus, compatibility
holds: ∇wQ̂

π
w(s, a) = ∇ log π(s, a). We set out to find the parameter that minimizes the

mean squared error

Eπ(w) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)
[
Qπ(s, a)− w>ψsa − b(s)

]2
,

where b(s) is any baseline. We can show that the optimum w? = arg minw Eπ(w) is inde-
pendent of baseline b(s). Hence we can first minimize the variance by plugging in w? and
then consider Eπ(w?) as a function of b(s). Subsequently, the optimum b? = arg min

b
Eπ (w?)

is exactly the value function V π. In this sense, the variance of the estimated policy gradient
is minimized by using the value function as the baseline. Furthermore, the linear function
w?>ψsa is the least-squared optimal parametric representation for the advantage function.
We can leverage this result by setting b(s) = V π(s) in equation (7). Combining with the

11

fact that TD δt is an unbiased estimate of the advantage function, showed in equation (6),
we obtain the update of θ using natural gradient in the form ∇̃J(π) = G(θ)−1∇J(π),

θt+1 = θt + βtG(θt)
−1δtψstat , (8)

where βt > 0 is the step size for the actor.
We present one version of the natural actor-critic algorithm in Algorithm 2, which in-

corporates the advantage parameters w. As discussed before, the compatible feature w>ψsa
is an approximation of the advantage function. We want w to minimize the mean squared
error

Eπ(w) = Es∼dπ ,a∼π

[(
w>ψsa − Aπ(s, a)

)2]
.

The gradient of Eπ(w) is

∇wEπ(w) = 2
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)
[
w>ψsa − Aπ(s, a)

]
ψsa.

We use 2
(
ψstatψ

>
statw − δtψstat

)
to approximate the above gradient. Hence the parameter w

can be updated following this direction. The natural gradient used by the actor is ∇̃J (θt) =
wt+1. It is later proved in Lemma 8, [BSGL09] that wt → G(θ)−1E [δπθt ψstat] as t→∞ with
probability one. As a result, even if our update of θ is different from the one introduced
earlier in equation (8), the convergence analysis shows that the trajectory still moves in the
direction of the natural gradient. The step sizes are chosen according to∑

t

αt =
∑
t

βt =∞,
∑
t

α2
t ,
∑
t

β2
t <∞

βt = o(αt).

(9)

Therefore, βt tends to 0 faster than αt, meaning that critic converges faster than the actor.
The average reward update employs step sizes ξt = cαt, where c > 0 is a constant.

Algorithm 2: Natural Actor-Critic Algorithm with Advantage Parameters

Input: Initial parameters θ0, v0, w0. Step sizes α = α0, β = β0, ξ = cα0.
Init: Initial state s0.

1 for t = 0, 1, . . . , do
2 Draw action at ∼ πθt(st, ·).
3 Observe next state st+1 ∼ P (·|st, at).
4 Get reward rt+1.

5 Average reward update: Ĵt+1 = (1− ξt) Ĵt + ξtrt+1.

6 TD update: δt = rt+1 − Ĵt+1 + v>t fst+1 − v>t fst.
7 Critic update: vt+1 = vt + αtδtfst .

8 wt+1 =
[
I − αtψstatψ>stat

]
wt + αtδtψstat .

9 Actor update: θt+1 = θt + βtwt+1.

10 end

12

References

[AM10] Gad Allon and Jan A. Van Mieghem. Global dual sourcing: Tailored base-surge
allocation to near- and offshore production. Management Science, 56(1):110–124,
2010.

[BSGL09] Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark
Lee. Natural actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[FHM18] Scott Fujimoto, H. V. Hoof, and D. Meger. Addressing function approximation
error in actor-critic methods. ArXiv, abs/1802.09477, 2018.

[GBLB12] Ivo Grondman, Lucian Busoniu, Gabriel A. D. Lopes, and Robert Babuska.
A survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews), 42(6):1291–1307, 2012.

[JSS15] Ganesh Janakiraman, Sridhar Seshadri, and Anshul Sheopuri. Analysis of tai-
lored base-surge policies in dual sourcing inventory systems. Management Sci-
ence, 61(7):1547–1561, 2015.

[KKM11] Steffen Klosterhalfen, Gudrun Kiesmüller, and Stefan Minner. A comparison of
the constant-order and dual-index policy for dual sourcing. International Jour-
nal of Production Economics, 133(1):302–311, 2011. Leading Edge of Inventory
Research.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning, 2016.

[VSW08] Senthil Veeraraghavan and Alan Scheller-Wolf. Now or later: A simple policy for
effective dual sourcing in capacitated systems. Operations Research, 56(4):850–
864, 2008.

[XG18] Linwei Xin and David A. Goldberg. Asymptotic optimality of tailored base-surge
policies in dual-sourcing inventory systems. Management Science, 64(1):437–452,
2018.

13

	Introduction
	MDP Formulation
	Prior Works
	Project Goals

	Actor-Critic Algorithm
	Natural Actor-Critic (NAC) for Long-Run Average Reward
	Advantage Actor-Critic (A2C) for Discounted Reward

	Implementation and Results
	NAC for Long-Run Average Reward
	A2C for Discounted Reward

	Natural Actor-Critic

