Airline Revenue Management using A2C

Tyler Sam and Sam Tan

May 17, 2021

Tyler Sam and Sam Tan

Airline Revenue Management using A2C

May 17, 2021 1 / 10

(Synchronous) Advantage Actor Critic

• Uses the advantage function in the policy gradient:

$$abla_{ heta} J(heta) pprox E_{ au} [\sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) A_w(s_t, a_t)]$$

(Synchronous) Advantage Actor Critic

• Uses the advantage function in the policy gradient:

$$abla_{ heta} J(heta) pprox E_{ au} [\sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) A_w(s_t,a_t)]$$

• Inherent variance reduction as the value function is treated as a baseline function.

(Synchronous) Advantage Actor Critic

• Uses the advantage function in the policy gradient:

$$abla_{ heta} J(heta) pprox E_{ au} [\sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t|s_t) A_w(s_t,a_t)]$$

 Inherent variance reduction as the value function is treated as a baseline function.

Recurrent Neural Networks

 Unlike traditional feed-forward neural networks, recurrent neural networks (RNN) use previous information to produce an output.

Recurrent Neural Networks

 Unlike traditional feed-forward neural networks, recurrent neural networks (RNN) use previous information to produce an output.

• The LSTM-Based Advantage Actor-Critic Learning for Resource Management in Network Slicing With User Mobility used A2C with a Long Short Term Memory (LSTM) RNN to get good results. • Gated Recurrent Units (GRUs) are similar to LSTMs but have fewer gates in each cell.

Architectures

• Default MLP from stable-baselines3, separate for policy and value.

Architectures

• Default MLP from stable-baselines3, separate for policy and value.

• One shared layer between policy and value, then two layers each.

Architectures

• Default MLP from stable-baselines3, separate for policy and value.

• One shared layer between policy and value, then two layers each.

• GRU for value, MLP for policy.

- learning_rate = 0.0007
- $n_steps = 5$
- Use RMSprop for optimization.

- learning_rate = 0.0007
- n_steps = 5
- Use RMSprop for optimization.
- Larger network sizes did not seem to improve results while adding runtime.

- learning_rate = 0.0007
- n_steps = 5
- Use RMSprop for optimization.
- Larger network sizes did not seem to improve results while adding runtime.
- Learn for 500,000 steps, evaluate over 500 simulations.

Results

L	τ	с	Base MLP	Shared	GRU	DBPC	PPO
3	20	2	364.29(150.89)	317.01(139.27)	188.17(108.42)	567.78(20.54)	764.39(6.98)
	50	6	845.68(247.119)	706.30(235.96)	737.47(228.16)	1759.91(33.76)	1790.66(13.81)
	100	12	1546.01(341.09)	1556.57(342.26)	1543.84(336.87)	3730.04(53.87)	3744.49(20.99)
	200	24	2913.53(488.92)	2901.09(487.35)	3107.65(521.16)	7683.04(70.09)	7551.33(33.77)
	500	61	8189.19(850.59)	7257.78(754.45)	8089.46(832.38)	19793.50(132.23)	20884.33(65.56)
5	20	1	116.18(72.08)	106.38(72.87)	93.72(69.54)	486.92(17.86)	654.81(9.28)
	50	4	585.96(252.78)	608.05 (243.24)	654.85(250.75)	1874.34(36.70)	1233.67(17.02)
	100	8	1489.12(457.99)	1641.90(449.97)	1650.27(459.54)	3905.97(50.49)	3237.69(31.58)
	200	16	3660.86(792.38)	3942.27(775.49)	3625.08(742.68)	8109.55(73.00)	7369.48(50.79)
	500	42	8698.46(1266.06)	8292.50(1140.22)	10985.99(1419.44)	21189.10(125.73)	21938.52(95.40)

• Computationally expensive.

- Computationally expensive.
 - We observed slow convergence, high reward variance.

- Computationally expensive.
 - We observed slow convergence, high reward variance.
 - However, our results showed promise, as the **maximum** observed values were more competitive.

Conclusions and Future Directions

• A2C seems to have limitations when applied to Airline Revenue Management; PPO may be a better choice.

Conclusions and Future Directions

• A2C seems to have limitations when applied to Airline Revenue Management; PPO may be a better choice.

• More computational power may allow for better results with A2C.

• A2C seems to have limitations when applied to Airline Revenue Management; PPO may be a better choice.

• More computational power may allow for better results with A2C.

• Try hyperparameter tuning, different architectures; there is some evidence that GRUs may improve performance.

Simple reinforcement learning with tensorflow part 8: Asynchronous actor-critic agents (a3c).

- Understanding lstm networks.
- Introduction to recurrent neural networks.