
Airline Revenue Management using Advantage
Actor Critic

Tyler Sam and Samuel Tan

ORIE 6590

May 16, 2021

Please find our code here: https://github.com/samstan/ORIE6590-Airline

1 Introduction

In this project, we consider a simplified airline revenue management task using bid-price
control. Bid-price control (and revenue management in general) is a common application
of operations research, wherein the company must delicately balance accepting arriv-
ing bids to earn revenue immediately while conserving resources for future bids. The
structure of this problem makes it particularly suitable to model using Markov Decision
Processes, as this report will explain.

As a motivating example, consider a scenario involving a fictional airline company
called Ithaca Flies. Ithaca Flies only operates three direct flights: Ithaca to NEK, Ithaca to
Detroit, and Detroit to LA. Additionally, one may elect to fly from Ithaca to LA via Detroit.
Each flight has economy and business seats. Ithaca Flies implements a bid-price control
policy to sell tickets on these flights, where the bid-prices are the fixed trip fares. The goal
of the controller is to maximize revenue. Previous approaches to the general bid-price
control problem for airline revenue management used linear programming [4]. In this
report, we provide several deep reinforcement learning (RL) approaches and compare
their performances with those of previous approaches.

2 Background

We follow the formulation described in [4], wherein this problem is framed as a finite-
horizon Markov Decision Process (MDP). In that context, we consider a scenario in which
the relevant airline has a central hub, and L other locations. There are single-leg itineraries
between the hub and each location in both directions, as well as two-leg itineraries be-
tween different locations. Therefore in total, we have m = 2L distinct flights, also called
resources. As we additionally distinguish between low and high class fares for each

2

https://github.com/samstan/ORIE6590-Airline


itinerary, we therefore have n = 2(m + L(L − 1)) distinct itineraries, which also char-
acterizes the type of each customer.

As part of this formulation, we specify a matrix A, where the ijth element denotes the
amount of resource i a customer of type j uses, e.g. a business seat on the Ithaca to LA via
Detroit flight requires a business seat on both flights.

We also specify for each class and time step t, a probability pt,j which is the probability
that a customer of type j arrives at time t. Note we restrict that only one customer arrives
at each period.

2.1 MDP Formulation

Given these parameters, the MDP is defined with:

• State space: non-negative integer for each resource. Initialized at a specified capac-
ity for each resource ci (i.e. the number of seats on each flight).

• Action space: (0,1) for each class j, denoting whether controller would accept a class
j customer if one arrives. We enforce that there are sufficient resources if aj > 0
(according to the A matrix).

• Rewards: given state s and action a, earn revenue f j if a class j bid is accepted.

• Transitions: given state s and action a, with probability pt,j the next state will be
s− Ajaj, where Aj denotes the jth column of A.

2.2 Existing Approaches

As previously mentioned, the original MDP formulation for bid-price control was given
in [4]. However, the authors approached the problem with linear programming due to
the curse of dimensionality, using column generation to address the high dimensionality.
Specifically, they use an affine functional approximation to the optimal value function
and derive bounds on the difference in revenue compared to the optimal policy. Airline
revenue management was a specific example of bid-price control that was analyzed.

Similarly, [11] addresses the more specific bid-price problem applied to airline revenue
management. It uses Lagrangian relaxation to solve the optimization problem, taking into
account the time until departure as well as the remaining leg capacities.

2.3 Advantage Actor Critic

Advantage Actor Critic (A2C) is a popular variant of the actor-critic framework for re-
inforcement learning [8]. To remind the reader, actor-critic algorithms maintain two sets
of parameters, one for the neural network approximating the value function (“critic”)
and another for the the neural network representing the policy (“actor”), which uses
the critic for updates. Specifically, at each iteration, first, the parameters of the policy
neural network are updated given the chosen action and the “critic” neural network.
Then, using the received reward, the correction for the value function is computed and

3



used to update the parameters for the “critic” neural network. This process is repeated
for a fixed number of iterations or until a convergence criteria is reached. Also, since
A(st, at) = Q(st, at)−V(st), variance reduction is inherent in the method as V(st) can be
thought of as a baseline function.

In the case of A2C, the updates use an estimate for the advantage function (the gener-
alized advantage estimator), given by

A(st, at) = Q(st, at)−V(st) ≈
k−1

∑
i=0

γirt+1 + γkV(st+k)−V(st).

We further note that some refer to the synchronous version of Asynchronous Actor
Critic (A3C) as A2C, in which there are multiple workers but only perform global up-
dates after all workers are done. However, in the Stable Baseline3 A2C GitHub repository
and documentation, there is no feature for varying the number of workers, so the imple-
mentation of A2C that is used in this report is the one with only one worker [9].

2.4 Recurrent Neural Networks

As we use recurrent neural networks (RNN) in our neural network architectures, we
briefly introduce them here. An RNN [10] is a special type of neural network that has
temporal connections in the hidden layers. This enables an RNN to exhibit temporal
behavior and process sequences of inputs better than a vanilla neural network. This is
achieved by having a layer that keeps an internal hidden state.

Figure 1: An illustration of an RNN [1].

Here, the xi are the sequence of inputs, A is a cell, and hi is the hidden layer at time
i. For every xi that is passed into the RNN, the cell processes it and updates the hidden
state hi.

Because of the RNN’s ability to process sequential data, we hypothesize that using it
to predict the value function given a state will lead to better performance compared to
traditional MLPs. Despite the success of RNNs, vanilla RNNs often run into the vanish-
ing gradient and exploding gradient problems. This is an issue where during gradient
descent, the updates can be effectively zero or unbounded since RNNs build up long
chains of derivatives during backpropagation. To alleviate this issue, many use a long
short-term memory (LSTM) network [10].

4



2.5 Long Short-Term Memory

An LSTM essentially keeps some memory cells that are more resistant to change. The
main components of an LSTM are the cell, input gate, output gate, and forget gate. LSTMs
have proved to be superior to vanilla RNNs due to their ability to avoid the vanishing and
exploding gradient problems.

Figure 2: An illustration of an LSTM cell [3].

The main idea behind LSTMs can be found in the horizontal black line near the top of
the cell. This serves as the memory of the LSTM and is the cell state. Since it has minimal
interactions with the inputs, it can retain its state for a long period of time.

Aside from all of the advantages of LSTMs, others have recently found success in
using LSTMs as the neural network in RL algorithms. Specifically, in The LSTM-Based Ad-
vantage Actor-Critic Learning for Resource Management in Network Slicing With User Mobility,
Li et al. utilizes an LSTM in both the neural network approximating the policy and the
neural network approximating the value function; both neural networks share the LSTM
and then include a couple of feed forward layers each [7].

2.6 Gated Recurrent Unit

One downside of LSTMs is that they are more complex than vanilla RNNs. Due to com-
putational issues with training, we use a newer and simpler modification of RNNs, the
gated recurrent unit (GRU) [5]. This architecture has fewer parameters to fit but still
achieves similar results compared to LSTMs. A GRU achieves a simpler architecture by
reducing the number of gates. It uses an update and reset gate to control its memory cells.

Figure 3: An illustration of a GRU cell [2].

5



3 Methods

3.1 Model Parameters

The parameters varied for the underlying MDP are the number of locations L, the time
horizon τ, and the capacities for each resource c.

Note that the fares f and probability A of demands were randomly generated. Accord-
ing to [4], fare prices for the lower class were generated discrete-uniformly from {15, 49},
and the higher class fares were five times the corresponding lower class fare for the same
itinerary. For demand probabilities, we also enforce that there is always a 0.2 probabil-
ity that no customer arrives, where as the other probabilities were generated randomly
where 75% of demand was for lower class while 25% of demand was for higher class. For
the specific values, please see the codebase.

3.2 Neural Network Architecture

We consider three sets of neural network architectures, where the policy and value func-
tion each require a (not necessarily separate) network. As our input is a vector, we only
focus on multilayer perceptrons and variations thereof. The base model has two fully
connected layers of 64 hidden units for both the policy and value function. The shared
model adds an additional initial layer of 64 hidden units which are shared between the
policy and value networks. The later policy and value units remain two fully connected
layers of 64 hidden units. Finally, the GRU model uses a two-layer two-hidden-unit net-
work for the policy function and a two-layer five-hidden-unit GRU network for the value
function. Due to computational constraints related to the GRU, we had to (arbitrarily)
choose only one of the two networks to include a GRU and chose to drastically reduce
the size of the other.

4 Results

The goal of this work is to compare our results with the other Airline Revenue Man-
agement team’s results as well as the benchmarks given in table 6 of Dynamic bid prices
in revenue management [4]. However, one major issue with comparing our results to the
benchmark values is we likely use different parameters, that is, the profit for each flight
and the transition probabilities, since Adelman does not state the parameters used in his
report. For example, the author states that the fixed fairs are drawn uniform on the range
{15, 49} but does not state what the realized values were in the results. Hence, we cannot
draw any concrete conclusions from our results compared to his.

Our results, summarized in Table 1, were ran with n steps = 5 for 500,000 learning
steps with a learning rate of 0.0007 (we experimented with different learning rates, learn-
ing steps, and other neural network architectures but found no noticeable improvements).
The reported results are averaged over 500 runs of evaluate.

6



L τ c Base MLP Shared GRU DBPC PPO

3 20 2 364.29(150.89) 317.01(139.27) 188.17(108.42) 567.78(20.54) 764.39(6.98)
50 6 845.68(247.119) 706.30(235.96) 737.47(228.16) 1759.91(33.76) 1790.66(13.81)

100 12 1546.01(341.09) 1556.57(342.26) 1543.84(336.87) 3730.04(53.87) 3744.49(20.99)
200 24 2913.53(488.92) 2901.09(487.35) 3107.65(521.16) 7683.04(70.09) 7551.33(33.77)
500 61 8189.19(850.59) 7257.78(754.45) 8089.46(832.38) 19793.50(132.23) 20884.33(65.56)

5 20 1 116.18(72.08) 106.38(72.87) 93.72(69.54) 486.92(17.86) 654.81(9.28)
50 4 585.96(252.78) 608.05 (243.24) 654.85(250.75) 1874.34(36.70) 1233.67(17.02)

100 8 1489.12(457.99) 1641.90(449.97) 1650.27(459.54) 3905.97(50.49) 3237.69(31.58)
200 16 3660.86(792.38) 3942.27(775.49) 3625.08(742.68) 8109.55(73.00) 7369.48(50.79)
500 42 8698.46(1266.06) 8292.50(1140.22) 10985.99(1419.44) 21189.10(125.73) 21938.52(95.40)

Table 1: Our version of Table 6 also including the PPO team’s results. The parameters are
consistent between our results and those of the other team. DBPC is dynamic bid price
control, the result of [4], which uses different parameters.

5 Discussion

Despite having different parameters from Adelman, our results fall quite short from both
his and the other team’s results. Our best model reaches about half of the values given by
the other team/Adelman. Also, the standard deviation of our rewards are significantly
larger compared to the other results. However, when we evaluated our policy for 500
runs, the maximum reward was close to Adelman’s and the PPO team’s results (in the
first row, for the Base MLP A2C model, the maximum reward was 792). We hypothesize
that this large standard deviation is due to the model not having “learned enough” as the
actions the model chooses do not vary much depending on the state. Hence, we believe
that these models can still perform competitively against the baselines given in Adelman
and the PPO team, but they require significantly more training time in order for our A2C
policies to learn the correct strategies.

6 Conclusion and Future Directions

In our deep reinforcement learning approach to bid-price control, we found that A2C
does not seem to be able to learn a good policy. This may be due to slow convergence,
as mentioned in Section 5, and poor choices of hyperparameters. Although we are disap-
pointed, we also note that this is not a surprising result. Indeed, the A2C library on which
the stable-baselines3 implementation is based mentions that their implementations are
very sensitive to hyperparameters and may simply fail to work (see the Github repository
for pytorch-a2c-ppo-acktr-gail) for RL tasks. On the other hand, PPO seems to per-
form quite competitively compared with the linear program approaches.

Given these results, we conclude that A2C may not be a suitable approach for the
task of bid-price control for airline revenue management. An exception may be made if
extensive computation power is available, although the performance for this case was not
tested and only extrapolated from our results.

7

pytorch-a2c-ppo-acktr-gail


For future work, one thing to try for future work is varying the hyperparameters such
as the learning rate and the neural network architectures. In particular, we seem to have
been limited by our modest computational power, so using GPUs may help achieve com-
petitive results. Other similar RL approaches such as Soft Actor Critic [6], which aim to
maximize entropy in addition to expected reward, are also of interest.

References

[1] Introduction to recurrent neural networks. URL: https://miro.medium.com/max/
1838/1*NKhwsOYNUT5xU7Pyf6Znhg.png.

[2] Python deep learning tutorial: Create a gru (rnn) in tensorflow. URL: https://www.
data-blogger.com/wp-content/uploads/2017/08/gru.

[3] Understanding lstm networks. URL: https://colah.github.io/images/

post-covers/lstm.

[4] Daniel Adelman. Dynamic bid prices in revenue management. Operations Research,
55(4):647–661, 2007.

[5] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014. URL: http://arxiv.org/abs/1412.3555, arXiv:1412.3555.

[6] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[7] Rongpeng Li, Chujie Wang, Zhifeng Zhao, Rongbin Guo, and Honggang Zhang.
The lstm-based advantage actor-critic learning for resource management in network
slicing with user mobility. IEEE Communications Letters, 24(9):2005–2009, 2020. doi:
10.1109/LCOMM.2020.3001227.

[8] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous meth-
ods for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[9] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. Stable baselines3. https://github.com/DLR-RM/

stable-baselines3, 2019.

[10] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-
term memory (LSTM) network. CoRR, abs/1808.03314, 2018. URL: http://arxiv.
org/abs/1808.03314, arXiv:1808.03314.

[11] Huseyin Topaloglu. Using lagrangian relaxation to compute capacity-dependent bid
prices in network revenue management. Operations Research, 57(3):637–649, 2009.

8

https://miro.medium.com/max/1838/1*NKhwsOYNUT5xU7Pyf6Znhg.png
https://miro.medium.com/max/1838/1*NKhwsOYNUT5xU7Pyf6Znhg.png
https://www.data-blogger.com/wp-content/uploads/2017/08/gru
https://www.data-blogger.com/wp-content/uploads/2017/08/gru
https://colah.github.io/images/post-covers/lstm
https://colah.github.io/images/post-covers/lstm
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1109/LCOMM.2020.3001227
https://doi.org/10.1109/LCOMM.2020.3001227
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1808.03314

	Introduction
	Background
	MDP Formulation
	Existing Approaches
	Advantage Actor Critic
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Methods
	Model Parameters
	Neural Network Architecture

	Results
	Discussion
	Conclusion and Future Directions

