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Ride-haliling problems

e Large scale
e Complicated dynamics over space, time, and participants
e Combinatorial challenge to arrange many cars at the same time



Ride-haliling problems

e Large scale
e Complicated dynamics over space, time, and participants
e Combinatorial challenge to arrange many cars at the same time

e Can we do this sequentially, making the decision for one car at a time?

Feng, Jiekun, Mark Gluzman, and J. G. Dai. "Scalable Deep Reinforcement
Learning for Ride-Hailing." IEEE Control Systems Letters (2020).

"Sequential decision making" process
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Cars are characterized by

(goal region, distance/time to goal region)
Passenger requests:

[R(1,1), R(1,2), R(2,1), R(2,2)]



Region 2 ‘

“radius of patience"

Passenger requests:
[R(1,1), R(1,2), R(2,1), R(2,2)]
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. L Passenger requests:
Choose a trip destination for each car: [R(1,1), R(1,2), R2,1), R(2,2)]

- pick up a passenger requesting a ride from region 1



Region 2 ‘

. L Passenger requests:
Choose a trip destination for each car: [R(1,1), R(1,2), R2,1), R(2,2)]

- pick up a passenger requesting a ride from region 1
- change goal region of car to region 2
- decrease unmet passenger requests by 1
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Passenger requests:

Choos_e a trip destination for egch car: _ [R(1,1), R(1,2)-1, R(2,1), R(2,2)]
- pick up a passenger requesting a ride from region 1
- empty-car rerouting




Region 2 ‘

Ch in destination f h car Passenger requests:

OOSQ a trip destination for e_ac CQI‘. - [R(l,l), R(l,Z)-l, R(Z,l), R(2,2)]
- pick up a passenger requesting a ride from region 1
- empty-car rerouting



Region 2 ‘

Region 1

. L _ Passenger requests:
Choose a trip destination for each car: _ [R(1,1), R(1,2)-1, R(2,1), R(2,2)]
- pick up a passenger requesting a ride from region 1
- empty-car rerouting
- don't do anything



MDP formulation

Finite horizon H=360, discrete state and action spaces, no discount
State space: (time-of-day, cars, passengers)
Action space: trip assignments {1, ..., R=5} x {1, ..., R} for each car

Transition:
o  Within the same time-of-day:
m change the (destination, distance to destination) of one car
m record whether passenger request is met
o At transition of time-of-day:
m sample passenger requests
m move cars forward one step

e Reward: 1 if a passenger ride request is met; O otherwise
e Overall performance measure: fraction of total requests filled



PPO
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e Policy Gradient is challenging natural policy gradient

o Convergence Problem

o Sensitive to the choice of step size

o Poor sample efficiency

o Second-order derivative can not be scalable

e PPO strikes a balance between ease of implementation, sample complexity,

and ease of tuning.
o Instead of a hard constraint, formalize it as a penalty in objective (PPO-Penalty)
m Limit how far we can change the policy through KL-divergence
o Use clipping to remove incentives for new policy to go far from old one
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One-step and n-step deep Q network
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Tried n=5

Sample from a replay buffer (size 512)

Target network is updated periodically (every 200 steps)

Use Huber loss to measure the difference between main Q network and target

e Problem: some (s,a) are not visited enough (or at all) to guarantee an accurate estimate



Lessons learned in implementation

e Learning Rate Scheduling
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Using Cosine Scheduler is helpful for
convergence

Simulated restart of the learning process,
reuse good weights

e Activation Function
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ReLU works better than TanH
Sparser model

Avoid vanishing gradient problem
Fewer computation

e Regularization
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L2 on Embedding layer

e Hyperparameter optimization
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Clipping parameter
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Future work

e Variance Reduction Techniques:
o TD(lambda) or TD(n) incorporated in the
advantage function estimation
e Domain adaptation
o Zero-shot learning for unseen state

* In terms of SC, smooth function

** At the time when the paper is published, this paper did not show convergence evidence on non-smooth objective functions

SVRG SAG SGD SDCA

Memory O(d) O(nd) O(d) O(nd)

Convergence* Linear Linear Sub-linear Linear
Non-smooth** (%] ]




Future work

e Use Dueling Network:
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estimate Q(s,a) directly

estimate Q(s,a) = V(s) + A(s,a)



