
Scalable Ride-hailing using 

Reinforcement Learning

Yueying Li, Yujia Zhang

May 17, 2021

ORIE 6590 Final Presentation



Ride-hailing problems

● Large scale

● Complicated dynamics over space, time, and participants

● Combinatorial challenge to arrange many cars at the same time



Ride-hailing problems

● Large scale

● Complicated dynamics over space, time, and participants

● Combinatorial challenge to arrange many cars at the same time

● Can we do this sequentially, making the decision for one car at a time?

Feng, Jiekun, Mark Gluzman, and J. G. Dai. "Scalable Deep Reinforcement 

Learning for Ride-Hailing." IEEE Control Systems Letters (2020).

"Sequential decision making" process



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

Passenger requests:

[R(1,1), R(1,2), R(2,1), R(2,2)]

Car

Cars are characterized by 

(goal region, distance/time to goal region) 



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

"radius of patience"

Passenger requests:

[R(1,1), R(1,2), R(2,1), R(2,2)]



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

Passenger requests:

[R(1,1), R(1,2), R(2,1), R(2,2)]Choose a trip destination for each car:
- pick up a passenger requesting a ride from region 1



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

Passenger requests:

[R(1,1), R(1,2), R(2,1), R(2,2)]Choose a trip destination for each car:
- pick up a passenger requesting a ride from region 1

- change goal region of car to region 2

- decrease unmet passenger requests by 1



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

Passenger requests:

[R(1,1), R(1,2)-1, R(2,1), R(2,2)]Choose a trip destination for each car:
- pick up a passenger requesting a ride from region 1

- empty-car rerouting



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

Passenger requests:

[R(1,1), R(1,2)-1, R(2,1), R(2,2)]Choose a trip destination for each car:
- pick up a passenger requesting a ride from region 1

- empty-car rerouting



Region 1 Region 2

Car
Car

Car

Car

Car
Car

Car

Car

Passenger requests:

[R(1,1), R(1,2)-1, R(2,1), R(2,2)]Choose a trip destination for each car:
- pick up a passenger requesting a ride from region 1

- empty-car rerouting

- don't do anything



MDP formulation

● Finite horizon H=360, discrete state and action spaces, no discount
● State space: (time-of-day, cars, passengers)
● Action space: trip assignments {1, ..., R=5} x {1, ..., R} for each car
● Transition:

○ Within the same time-of-day:
■ change the (destination, distance to destination) of one car
■ record whether passenger request is met

○ At transition of time-of-day:
■ sample passenger requests
■ move cars forward one step

● Reward: 1 if a passenger ride request is met; 0 otherwise
● Overall performance measure: fraction of total requests filled



PPO

● Policy Gradient is challenging
○ Convergence Problem

○ Sensitive to the choice of step size

○ Poor sample efficiency 

○ Second-order derivative can not be scalable 

● PPO strikes a balance between ease of implementation, sample complexity, 

and ease of tuning.
○ Instead of a hard constraint, formalize it as a penalty in objective (PPO-Penalty)

■ Limit how far we can change the policy through KL-divergence

○ Use clipping to remove incentives for new policy to go far from old one 



One-step and n-step deep Q network

● Tried n=5

● Sample from a replay buffer (size 512)

● Target network is updated periodically (every 200 steps)

● Use Huber loss to measure the difference between main Q network and target

● Problem: some (s,a) are not visited enough (or at all) to guarantee an accurate estimate



Lessons learned in implementation

● Learning Rate Scheduling
○ Using Cosine Scheduler is helpful for 

convergence 
○ Simulated restart of the learning process, 

reuse good weights

● Activation Function
○ ReLU works better than TanH
○ Sparser model
○ Avoid vanishing gradient problem
○ Fewer computation 

● Regularization
○ L2 on Embedding layer 

● Hyperparameter optimization
○ Clipping parameter



Future work

● Variance Reduction Techniques:
○ TD(lambda) or TD(n) incorporated in the 

advantage function estimation 

● Domain adaptation
○ Zero-shot learning for unseen state



Future work

● Use Dueling Network:

estimate Q(s,a) directly

estimate Q(s,a) = V(s) + A(s,a)


