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1 Introduction

Ride-hailing services have seen a rapid rise in the past decades. Companies such as Uber, Lyft,
and Didi Chuxing allow passengers to request rides through an app and match them with drivers
that fulfill their requests. This matching problem is intrinsically complicated due to many reasons,
including

• spatial complexity: cars and passengers are distributed across different regions;

• temporal complexity: fulfilling a passenger request, as well as routing an empty car to pick
up a passenger, involves a time duration and requires the planner to foresee future impact of
the decisions;

• scalability: when there are many cars to be arranged and many passenger requests, matching
them becomes a huge combinatorial problem that is in most cases intractable;

• parameter uncertainty: traffic parameters (travel time, passenger arrival rates) vary over
different times of the day; moreover, the planner may only have partial knowledge of the
parameters.

As such, the operations research community has adopted approximation methods to solve this
problem. One example is [1], which uses a queueing network model and derives a fluid-based
approach that is optimal in the asymptotic “large-market” regime, under the assumption that the
centralized planner knows the traffic parameters.

In the recent years, the ridehailing problem has also been tackled using reinforcement learning
(RL) approaches. Here, the problem is modeled as a Markov Decision Process (MDP) and the
planner seeks to make smart decisions so as to maximize the reward it accumulates in the long run.
The development in RL theory, such as methods for policy optimization, can then be deployed to
improve the policy the planner takes.

Along this line, [2] builds on the work in [1] and adopts an RL approach to tackle the problem
of trip assignments to cars across a collection of regions. In particular, they assume a centralized
planner without knowledge of traffic parameters assigns trips to available cars in the system. Their
approach alleviates the combinatorial challenge by turning each collection of trip assignments into
a sequential decision making problem, making the decision for one car at a time. They then use
proximal policy optimization (PPO) [7] to train the agent, yielding a policy that outperforms [1].
Performance is measured by the fraction of ride requests fulfilled over the entire time. We also use
this metric to measure performance in our report.

Goals for the project:

• Understand the model in [2] and implement it as a custom gym environment;

• Implement the PPO algorithm in [2] and observe its performance;

• Investigate the value provided by empty-car-rerouting by disallowing it in the environment
and comparing the results;

• Implement RL algorithms other than PPO and observe their performance. Along the way,
also observe how different design details (e.g., hyperparameters) affect the training and out-
come.
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2 Model dynamics

Overview We model a five-region traffic network with a fixed horizon and number of cars. A
centralized planner has the information of the location of all cars as well as the passenger arrivals
in each new epoch (i.e., time-of-day). Each passenger has an identical “patience” time they are
willing to wait to be picked up. At each epoch, the centralized planner assigns actions to some cars
in the system through a “sequential decision making process” (SDM). Below we give descriptions
for the model parameters, state and action space, reward function, and details of the SDM. Lastly,
we mention a few details in the implementation of the simulator.

2.1 Model Setup

Parameters The model uses the following parameters:

• Horizon: H = 360. This is the total number of epochs in a ”working day”, which are
divided evenly into three periods, which we denote q, each with length 120.

• Number of regions: R = 5.

• Number of cars: N = 1000.

• Passenger arrival rates: λ. This is a two-dimensional array in R3×R, where λ[q, i] repre-
sents the expected number of passengers arriving to region i in period q.

• Distribution of ride requests: P . This is a three-dimensional array in R3×R×R, where
P [q, i, j] represents the probability that a request starting at region i in period q has j as its
destination. By construction,

∑
j P [q, i, j] = 1 for all q, i.

• Travel times: τ . This is a three-dimensional array in R3×R×R, with τ [q, i, j] representing
the travel time from region i to region j in period q.

• Patience time: L = 5. The maximum time a passenger is willing to wait for a matching.

The values of λ, P, τ are identical to those listed in the appendix of [2].

State space The state has the following components:

• Current epoch: an integer taking values from 0 to H;

• Cars: an iterated two-dimensional array, whose [i, k] entry corresponds to the number of
cars with region i as their destination and will arrive k time steps later. We say a car is
available for (requests originating from) region i if its destination is i and it will arrive in no
more than L time steps. Using such (destination, time-till-destination) tuples to represent
the cars state has the advantage of making the problem scalable, as the centralized planner
can focus its attention on the cars available for one origin of interest, rather than arranging
every car on the map;

• Passengers: a two-dimensional array, whose [i, j] entry is the number of ride requests from
region i to region j made in the current time epoch;

• “Do-nothing” cars: a two-dimensional array similar to the cars component; it records the
number of cars that do not undergo a change in destination in the decision process for the
current epoch. We will elaborate on this in our discussion of the transition dynamics later.

2.2 Action Space, Transition Dynamics, and Reward

Actions and transition dynamics We discuss the action space and transition dynamics to-
gether because they are closely dependent on each other. The action space is the space of size-two
tuples where each entry takes values in {1, · · · , R}. An action (i, j) represents assigning a trip with
origin i and destination j.

At each time epoch, actions can be taken for each car that is within time L away from the
region it is heading to. This set of cars, called “available cars”, can be assigned new trips. Once
such assignments are made, the time progresses to a new epoch, where cars move forward one unit
of distance closer to their destinations, the passenger requests are reset, and new passenger arrivals
are sampled.

2



Deciding actions for a large set of cars at each epoch is difficult to achieve all together. The
sequential decision making process (SDM) combats this challenge by imposing an order on the cars
awaiting trip assignments at each epoch; taking actions in sequence reduces the complexity of the
decision-making.

An SDM is run at each epoch on the available cars. We present the SDM algorithm for one
epoch in Algorithm 1. It loops over all the regions and focuses on the cars available for each region
o (as an “origin”). Actions (trip assignments) are made sequentially to one car at a time. An
action can fall into three categories:

• Matching of a ride request: as passenger matching has priority, a ride request starting from
o is matched as long as there are cars available at o;

• Empty car rerouting: the car is idling at o and the action relocates it to another region;

• “Do-nothing”: the action does not change the destination of the car.

Algorithm 1: Generating atomic actions in the SDM process for one epoch

Result: Transition dynamics in the SDM process for one epoch
initialization;
for each region o do

get number of cars available for dispatch at o;
if there are such cars then

if there is a request starting at o then
match car to passenger;
car status is updated; passenger matrix is updated;

else
for each available car at o do

if car is idling at origin o and action places it to d 6= o then
empty-car routing; cars status is updated;

else
“do-nothing”; car is excluded from available cars pool and placed into
“do-nothing” pool;

end

end

end
exclude cars with assigned trips from the available cars pool;

end

end

Note that each step of the SDM takes action on one car. At each step, the change in car
destination is reflected in the cars component; if a passenger request is taken, it is subtracted
from the passenger matrix; if a car is assigned “do-nothing”, the “do-nothing” component in the
state is updated correspondingly. It is necessary to separately keep track of the “do-nothing” cars,
because otherwise they will still be considered available based on distance. The SDM for each
epoch lasts until all available cars at this epoch receive their trip assignments, at which point the
time progresses to a new epoch.

Reward An important metric for evaluating the performance of ridehailing systems is the frac-
tion of passenger requests fulfilled. Thus, we assign a reward of 1 to each matched request, and a
reward of 0 to an empty rerouting task or a do-nothing task. At the end of the simulation, we can
directly compute the fraction of requests fulfilled from the cumulative reward.

2.3 Simulation details

We next mention a few details in the implementation of the simulator.
First, although the model imposes a hierarchy in the sense that there are multiple steps in the

SDM of one epoch, the action implemented at any SDM step (whether it is in the middle or at
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the end of the current SDM) is always one of the 25 possible trip assignments. As such, it is not
necessary to explicitly implement a large “action vector” for each epoch. Instead, the simulator
runs an MDP whose transitions occur on the scale of one SDM step; in each iteration, action (i.e.,
trip assignment) is taken on only one car, resulting in the change of status of this particular car
and possible fulfillment of one passenger request. Only upon the entrance of a new epoch are all
cars moved one unit of distance forward and new passenger arrivals sampled. In other words, the
simulator “flattens” the hierarchy in the dynamics constructed in the paper.

Furthermore, we make the simulation consistent with the fact that the SDM loops over the
regions one by one, each time focusing on ride requests with a certain region as the origin. To
achieve this, we add an auxiliary component to the state vector that tracks the region currently
being considered as the “origin” in the SDM. The simulator operates under the assumption that
the origin of the action (trip assignment) aligns with the current SDM origin. (This constraint is
supposed to be satisfied on the agent’s part, who only has the freedom to choose the destinations
of trip assignments. We implement this in all of our agents, whether under random sampling or
with policy training.)

Lastly, for each SDM, we maintain an “SDM clock” that keeps track of how many steps are left
in the current SDM. The value of the SDM clock is initialized with the number of available cars
in the system at the start of epoch.

3 Methodology

3.1 Proximal Policy Optimization

[2] uses proximal policy optimization [7] to train the centralized planner. We do not repeat their
equations here. Mathematical details can be found in their original paper.

Algorithm 2: Original PPO algorithm for policy improvement in [2]

Result: Policy
initialize policy network with random weights πθ0 ;
for each policy iteration j = 0, · · · , J do

Run K episodes of Monte Carlo simulations using current policy πθj ;

Obtain a stochastic estimate of value function V̂ for the states visited in the simulation;

Learn function approximator Vψ to V̂ ;
Use Vψ to estimate advantage for each state-action pair visited in the simulation;
Update policy πθj to maximize the PPO surrogate objective function;

end

3.2 Deep Q Learning

In addition to PPO, we implement deep Q learning [6] on the same environment. Q-learning is
based on Bellman equation

Q(s, a) = r(s, a) + max
a′

Es′∼P (·|s,a)[Q(s′, a′)],

where the Q-value Q(s, a) represents the expected cumulative return of taking action a at the
current step and following the optimal policy afterwards. Since the expected value is hard to
compute for large state and action spaces, Q-learning uses a stochastic version of the Bellman
equation where the expectation is replaced by samples of s′. We then update the Q-values using
some learning rate α, treating the stochastic version of the RHS of the Bellman equation as the
target:

Q(s, a)← (1− α)Q(s, a) + α(r(s, a) + max
a′

Q(s′, a′)).

When the Q functions are represented by neural networks, we generally seek to minimize the error
between the left hand side and right hand side. Note that both expressions are approximations to
the true Q-value, i.e., the target is not a “ground truth” baseline as in supervised learning.
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For the sake of stability, we keep two networks, one for the main Q value Qθ and one for the
target Qθ̄. At each training iteration, the main Q network is optimized to approach the one-step
lookahead value predicted by the target Q network. The target is then updated periodically with
the current main Q network’s weights.

To increase the statistical power of the process, we use experience replay where we sample a
“replay buffer” B randomly from the memory at each iteration. Sampling the replay buffer shuffles
the experiences and decreases the sequential correlation between the transitions close to each other
in history.

For L(·, ·) being some measure of difference, we have the following optimization problem for
deep Q-learning:

min
θ

∑
st,at,st+1∈B

L
(
Qθ(st, at), r(st, at) + γ ·max

a′
Qθ̄(st+1, a

′)
)

where θ̄ is set to θ periodically at some preset frequency. Moreover, justified by the Bellman
equation, we can define an n-step version:

min
θ

∑
st,at,st+n∈B

L

(
Qθ(st, at),

n−1∑
i=0

γir(st+i, at+i) + γn ·max
a′

Qθ̄(st+n, a
′)

)
.

3.3 Neural network implementation and tuning

The state value and policy networks in PPO and the state-action value network in DQN all take
state as an input. In our implementation, they share similar neural network architecture.

We follow the setup in [2] and process the “epoch” component of the state vector using an
embedding layer. Embedding is a technique for representing categorical variables, with the most
common example being word embedding in text processing [3]. An embedding maps each cate-
gorical variable to a point in low-dimensional space, which is a more compact representation than
representing each value using one-hot encoding in high-dimensional space. We hypothesize that the
role of embedding here is to “tone down” the effect of different epoch values that make otherwise
similar states (in terms of cars and passengers) look very different to the neural network.

Then, we normalize the rest of the state components (using the mean and standard deviation
from Monte Carlo simulations) and concatenate the normalized entries with the embedded epoch
representation. This constitutes the first hidden layer of our neural network. Note that this process
naturally implies the following relation:

size of state vector - 1 + size of embedding layer = size of first hidden layer.

In our implementation, the state vector has size 456 and the embedding size is 6. As a result,
the first hidden layer is of size 461. We then use two more hidden layers, each of size 44 and
5, connecting them with ReLU activation functions, before outputting. We use ReLU instead of
tanh for activation since the back-propagation for ReLU results in less gradient explosion. For
PPO, the state value network outputs a scalar; the policy network outputs a 25-dimensional vector
representing the probability of taking each action. For DQN, the state-action value network outputs
a 25-dimensional vector representing the Q value at the input state and each action.

For PPO, we mainly follow [2] and use the same values for the other hyperparameters. A few
details worth mentioning include:

• We changed the initialization of the model weights from random to incremental, meaning
that we transferred what the model learned from the last episode to the current.

• We implemented early stopping based on KL divergence between the current policy model
and the previous policy model. We found a blog post by John Schulman [4] that derived an
unbiased estimator for KL divergence. Namely, a sample-based estimate of KL divergence
between two distributions q and p is given by

K̂L[q, p] =
1

n

n∑
i=1

(ri − 1)− log(ri),
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where ri = p(xi)
q(xi)

and xi ∼ q. We follow the way Stable Baselines3 implements PPO [8]

and computes a KL divergence estimate between the previous and current policy model, and
evaluate whether this estimate meets the stopping criterion used in [2].

• For policy training, we also added an L2 regularization of the policy network parameters to
prevent overfitting.

• The main challenge we faced while trying to recreate the results from PPO in [2] is the large
size of the simulation data. Though the problem is finite-horizon, and the storage and time
complexity in theory scales linearly with the number of episodes, each simulation takes a
different number of MDP iterations due to stochasticity in the dynamics, often on the order
of tens of thousands of time steps per episode. For many times, our optimization runs were
terminated because the system went out of memory to store the simulation data. We are
aware of the tradeoff in choosing the number of episodes to simulate. On one hand, not
having enough episodes results in a noisy value function estimate; on the other hand, having
a large number of episodes poses a challenge for data storage, which we are seeking to resolve
right now.

• We also considered improvements in learning rate scheduling. Because the default learning
rate is quite small and results in a slow convergence with our model, we decided to use a step
decaying scheduler. The scheduler decreases the learning rate by 0.2 after 20 steps.

Besides, we also experimented with the following cosine schedulers: It has the effect of
starting with a large learning rate that is relatively rapidly decreased to a minimum value
before being increased rapidly again. The resetting of the learning rate acts like a simulated
restart of the learning process and the re-use of good weights as the starting point of the
restart is referred to as a ”warm restart” in contrast to a ”cold restart” where a new set of
small random numbers may be used as a starting point.

ηt = ηimin +
1

2

(
ηimax − ηimin

)(
1 + cos

(
Tcur
Ti

π

))
where ηimin and ηimax denotes the range of learning rates, and Tcur shows how many epochs
have passed since the last restart.

The intuition of the scheduler is to utilize the fact that our learning in each epoch starts from
a better policy model, so setting a warm start can be helpful under the initialization. [5]

Figure 1: Loss of PPO in policy net and value net over training iterations and the illustration for
the cosine scheduler.

For DQN, we use the following hyperparameters and schemes:

• We decay the learning rate for the Q-network over time. In particular, we adopt a scheme that
decays the learning rate by γ every nLR epochs (using torch.optim.lr scheduler.StepLR).
We choose γ = 0.2 and nLR = 20.

• We use the Huber loss to measure the difference between the main and target Q-networks:

L(x, y) =
1

n

∑
i

zi
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where

zi =

{
1
2

(xi−yi)2
β |xi − yi| < β

|xi − yi| − 1
2β otherwise

We use the default value β = 1 in PyTorch.SmoothL1loss.

• We choose to update the target Q-network every 200 steps.

• For multi-step Q-learning, we tried both nsteps = 5 and 10.

• We kept a replay buffer of size 512, sampled from a memory of size 4096. The minimum size
for the memory is set to be 1024 before a replay buffer can be sampled.

• We use ε-greedy, where we tried two schemes for decaying ε decay ε at step t using

εt = 0.2 · exp(−t/30000)

εt = 0.8 · n−0.6.

The first is very conservative while the second explores more in early iterations.

• We implemented early stopping in the following way: once the loss of the main Q-network
with respect to the current target Q-network is less than a threshold value, we terminate the
current episode and start training on a new episode. Based on empirical observation of the
training performance of the Q-network, we choose to start training on a new episode if the
average loss of the last 100 iterations is below 0.02.

4 Results

Preliminary results are given in Table 1. Due to limited access to high-performance computing
resources, we have not been able to conduct experiments for various hyperparameter settings. This
effort is in progress as we submit this report.

Our code can be found at: https://github.com/yl3469/RL-Ride-Hailing.

4.1 Randomized actions

With the constraint that the starting region of the action aligns with the current region considered
in the SDM, as discussed in Section 2.3, we first try a randomized policy that samples the action
destinations randomly from the five regions. Over 100 iterations, such policy results in 54.53%
request filled if empty car rerouting is allowed, and 50.18% requests filled if not.

We then implement policy networks initialized with random weights on the environment. Over
100 iterations, this results in similar performance as the random-sampling policy, as can be seen
in Table 1. (We would like to explore, more generally, the theory of whether a neural network
with random weights is in expectation similar to a random choice function with the same output
dimension.)

Both of them serve as baselines to which we can compare the performance of our trained
policies.

4.2 Policy training

Currently, we have some preliminary results in training.
As mentioned earlier, we are still struggling with data storage problem when running PPO.

Our best PPO results show 53% requests fulfilled (see Figure 3).
The problem with data storage is not as serious in DQN, since we train as we go and use a

memory and replay buffer of limited size. We first tried multi-step DQN with 5 and 10 steps under
the first ε-greedy decaying scheme. The performance is much worse than the random baseline.
We suspect it is due to insufficient exploration particularly in the early phases of training, where
the Q networks are noisy. We then tried 10-step DQN under the second ε-greedy scheme. We
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Empty rerouting No empty rerouting
Braverman OR baseline 84%
Feng et al. performance 87%
Randomized policy 54.53% (6.22%) 50.18% (6.44%)
Policy NN, randomized weights 53.30% (2.21%) 50.16% (0.66%)
PPO 54.32%
5-step DQN (first ε-greedy decaying scheme) 16%
10-step DQN (first ε-greedy decaying scheme) 23.01% (0.31%)
10-step DQN (second ε-greedy decaying scheme) 60.04% (0.60%)

Table 1: Comparison of performance: average fraction of requests filled (standard deviation).

trained for 10 episodes (with early stopping described above) and evaluated for 8 episodes. This
resulted in much better performance, with about 60% of the requests filled. The improvement is
presumably due to better exploration early on in the training. The loss of the Q-network over 10
training episodes and the performance of the trained network over 8 evaluation episodes is given
in Figure 2.

Figure 2: Performance of DQN

Figure 3: Performance of PPO over episodes (note that multiple episodes are shown for each single
policy iteration), the best performance is around 10th policy iteration

We hope to continue conducting experiments on both PPO and DQN under different hyperpa-
rameter settings.

5 Conclusion and discussion

So far, we have understood the model in [2], implemented as a gym environment, and constructed a
codebase for PPO and DQN. We are working on hyperparameter tuning to produce better training
results. Due to time constraints, we did not implement many different approaches. There are a
few more things we would like to explore in the future:

• Dueling Q networks [9]: This approach uses two streams, sharing the same state represen-
tation architecture, to learn the state-value function V (s) and advantage A(s, a) separately;
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it then combines the two and outputs an estimate for Q(s, a). This results from the insight
that the choice of action may not matter at some “safe” states, making the estimation of
A(s, a) less important. The dueling structure places priority on V (s) and on A(s, a) for states
where the choice of actions matters. It has been shown to achieve good performance on Atari
games, and we are curious how it will perform in the ridehailing environment.

• Hyperparameter tuning using Bayesian optimization: Any RL algorithm involves several
hyperparameters whose affect on training/evaluation performance is unclear and are difficult
to tune. Bayesian optimization treats the loss as a black-box function of the hyperparameters
and uses Gaussian process regression and acquisition functions to search for the optimal
hyperparameter configuration(s). We would like to implement this for our RL algorithms.

• Robustness: The model makes the fairly strong assumption that the centralized planner
observes everything. We wonder whether the SDM process and the policy optimization
approaches will be robust to perturbations, such as when the planner observes the state with
noise or only has partial observation of the state. This of course requires more modeling.

Lastly, we would like to thank our instructors, Dr. Jim Dai and Dr. Qiaomin Xie, and our
TA’s, Sean, Lucy, and Mark, for making the course an interesting and rewarding experience.
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