Inventory Control with Multiple Suppliers

Hemeng Li Ruifan Yang

PPO

Algorithm 1: PPO

Input: initial policy parameter θ_0 , initial value function parameter ϕ_0

Output: final policy parameter θ_K

1 **for** iteration k = 0, 1, 2, ... K - 1**do**

Collect a set of trajectories \mathcal{D}_k by running policy π_{θ_k} in environment for T timesteps

3 Compute estimated value function $\hat{V}^{\pi_{\theta_k}}(s_t)$

Compute estimated advantage function $\hat{A}^{\pi\theta_k}(s_t, a_t)$ based on current value function V_{ϕ_k}

5 Update the policy parameter by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \sum_{\tau \in \mathcal{D}_{k}} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{k}}\left(a_{t} \mid s_{t}\right)} \hat{A}^{\pi_{\theta_{k}}}\left(s_{t}, a_{t}\right), \quad \text{Clip}\left(\frac{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}{\pi_{\theta_{k}}\left(a_{t} \mid s_{t}\right)}, \epsilon\right) \hat{A}^{\pi_{\theta_{k}}}\left(s_{t}, a_{t}\right)\right)$$

using stochastic gradient ascent with Adam

Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}\left(s_t\right) - \hat{V}^{\pi_{\theta_k}}(s_t) \right)^2$$

using stochastic gradient descent with Adam

7 end

6

Implementation details

- Two separate neural networks for actor and critic
- Initial Policy: train initial actor with a TBS policy
- Value function estimation: TD(1)
- Normalized Advantage function
- Maximization/Minimization using Adam

Experimental Results

Experiment Setup:

	L_R	L_E	c_R	c_E	h	b	λ
Config 1	3	1	100	105	1	99	5
Config 2	3	1	100	105	1	19	10

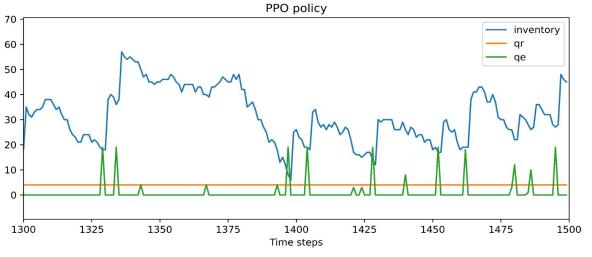
Table 1: Two different model parameters set-up.

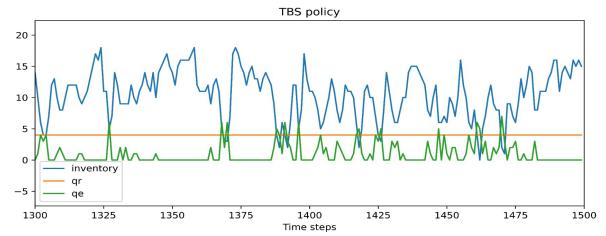
Numerical results and comparison with other group:

	initial	PPO	PPO (no init)	A2C	Optimal TBS
Config 1	-606.8 ± 28.1	-543.9 ± 5.38	-3473.6 ± 0.34	-539.6 ± 3.66	-516.8 ± 6.22
Config 2	-1113.4 ± 6.05	-1054.4 ± 8.84	-4774.9 ± 0.23	-1047.8 ± 4.92	-1018.92 ± 7.32

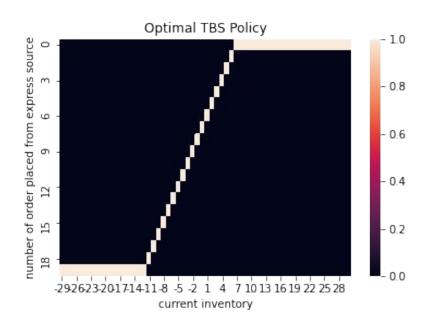
Table 2: Average reward of different policies.

Policy Visualization





Policy Visualization



Future Work

- Explore more complex NN structure
- Use multiple actors
- Reward normalization
- Adam annealing