
ORIE 6590 Final Report

Hemeng Li, Ruifan Yang

May 16, 2021

1 Introduction

In this project, we consider the dual-sourcing inventory systems, in which the company can
purchase a material from a regular supplier with lower cost, or from a faster supplier at a
higher cost under emergency situations. At each timestep, a demand is realized and the
company suffered a holding cost and a backorder cost. The goal of the problem is to find a
policy that minimize the long run average cost (consist of holding cost, backorder cost, and
supply costs) of the system.

We implement a gym environment for the dual-sourcing inventory system and design a
Proximal Policy Optimization(PPO) algorithm [4] with a Actor-Critic framework. Instead
of using a random initialization, we trained a TBS-alike network to used as the initial policy.
We run experiments in two dual-sourcing system with different configuration and compare
our policy with Tailored Base-Surge (TBS) Policy introduced by Allon and Mieghem [1] and
the policy trained by the other group.

Our algorithm always improve the TBS-alike initial policy but the trained policy does
not outperform the optimal TBS policy (found through a grid search). After visualizing
our initial and trained policy through a heatmap, we think the performance of the policy
might be limited because our neural net structure is too simple. Training the initial policy
on a more complex network might be able to improve the performance for our algorithm.
Other potential modification for the algorithms includes reward normalization and Adam
annealing, as suggested in Engstrom et al. [2].

1.1 Dual-sourcing Inventory Model Description

In this subsection, we will formally define our dual-sourcing inventory problem following [5].
Let {Dt}t∈(−∞,∞) and {D′t}t∈(−∞,∞) be mutually independent sequences of i.i.d. demand

realizations in which Dt, D
′
t ∼ Poisson(λ). Let LR ≥ 1 be the fixed lead time for the regular

source (R), and LE ≥ 0 be the fixed lead time for express source (E) with LR > LE + 1.
In addition, let cR and cE be the unit purchase price from regular and express source,
respectively, with cE − cR > 0, and let h and b the unit holding and backorder costs,
respectively. Let It denote the inventory at the beginning of period t, and let qRt , q

E
t be the

order placed from regular and express source at the beginning of period t, respectively. Note,
because of lead time, the orders received at period t from regular and express sources are
the orders placed LR and LE periods ago, respectively, i.e. qRt−LR and qEt−LE .
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Let Ĝ be an independent Geometric random variable with P(Ĝ = k) = 1/2k for all k ≥ 1.
We assume a random initial inventory,

I1 = −
Ĝ∑
i=1

D′−i

Let qRt = qEt = 0 for all t ≤ 0. Then at time period t = 1, 2, . . . , a sequence of events
happen in the following order:

• On-hand inventory It is observed.

• Ordering decisions qRt and qEt are made.

• New inventory qRt−LR and qEt−LE is received and added to the current inventory.

• Demand Dt is realized, and filled with current inventory (back-order allowed).

• Costs for period t, denote Ct, are incurred.

Note given that back-orders are allowed, the on-hand inventory may be negative, and it
is updated according to

It+1 = It + qRt−LR + qEt−LE −Dt

Let G(y) denote the sum of holding and back-order costs with y inventory. Then

G(y) = h ·max(y, 0) + b ·max(−y, 0)

We assume that the company pays for the order LE periods after the order was placed.
Then for all t ≥ LE + 1, the cost incurred at period t is the sum of holding and back-order
costs and the ordering costs incurred for orders placed in period t− LE, i.e.

Ct = cRq
R
t−LE + cEq

E
t−LE +G(It + qRt−LR + qEt−LE −Dt)

Note when 1 ≤ t ≤ LE, we have t − LE ≤ 0. Then Ct becomes just the sum of holding
and back-order costs since we assumed qRt = qEt = 0 for all t ≤ 0.

Now we want to formalize the admissible policies. An admissible possible π consists of
a sequence of measurable functions, i.e. π = {fπt : t ≥ 1}. Given Dt ∈ Z+, we consider
fπt : ZLE+LR

+ × Z→ Z2
+. To be more specific,

(qRt , q
E
t ) = fπt (qRt−LR , . . . , q

R
t−1, q

E
t−LE , . . . , q

E
t−1, It)

Let C(π) denote the long-run average cost incurred by a policy π. Our goal is to find a
policy that minimizes C(π), in which

C(π) := lim sup
T→∞

1

T

T∑
t=LE+1

E[Cπ
t ]

Note without loss of generality, we start the relative sum at t = LE + 1 instead of t = 1.
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1.2 MDP Parameters

In this subsection, we consider the discrete-time MDP equivalent to the model we described
in Section 1.2.

Let qt = (qRt−LR , . . . , q
R
t−1, q

E
t−LE , . . . , q

E
t−1) ∈ Z

LR+LE
+ be the pipeline vector of orders

placed, but not yet delivered, at the beginning of period t. In addition, let (st, at) be the
state-action pair at time period t for all t ≥ 1. The discrete-time MDP has state space
S = Z

LR+LE
+ × Z, where

st = (qt, It) = (qRt−LR , . . . , q
R
t−1, q

E
t−LE , . . . , q

E
t−1, It).

The action space is A = Z2
+. For all actions a = (aR, aE) ∈ Z2

+, aR is the amount to
order from regular source, and aE is the amount to order from express source. We define the
reward function r : S ×A → R as the negative of the expected cost incurred, i.e.

r(st, at) = −E[Ct] = −cRqRt−LE − cEq
E
t−LE − E

[
G(It + qRt−LR + qEt−LE −Dt)

]
Now we formalize the transition probability as follows:

P (st+1 | (st, at)) = P((qRt−LR+1, . . . , q
R
t , q

E
t−LE+1, . . . , q

E
t , It+1)︸ ︷︷ ︸

=st+1

| (qRt−LR
, . . . , qRt−1, q

E
t−LE

, . . . , qEt−1, It)︸ ︷︷ ︸
=st

, (qRt , q
E
t )︸ ︷︷ ︸

=at

)

= P
(
Dt = It + qRt−LR

+ qEt−LE
− It+1

)
,

where Dt ∼ Poisson(λ). And P(s′|(s, a)) = 0 for all other situations that does not fit above.

2 Existing Approach

Even though the dual-sourcing inventory model has been studied for a long time, the struc-
ture of the optimal policy still remains poorly understood except when the system is under
some very specific conditions. As a result, researchers have been shift their focuses to con-
struct various heuristic policies. In this section, we will introduce an existing heuristic policy
that has generally perform pretty well.

2.1 Tailored Base-Surge (TBS) Policy

The TBS policy was first proposed and analyzed by [1]. Before we formally introduce the

family of TBS policies, we firstly define so-called the expedited inventory position, denote Ît,
for all time t ≥ 1 as:

Ît := It +
t−1∑

k=t−LE

qEk +

t−LR+LE∑
k=t−LR

qRk

Intuitively, the expedited inventory position corresponds to the on-hand inventory at the
beginning of period t plus the orders that are placed before period t and can be received in
periods t, . . . , t+ LE.

Now we formally define the family of TBS policies. Each TBS policy, denote πr,S, has
parameter (r, S) in which r, S ∈ Z+. At each period, πr,S places a constant order r from reg-
ular source and orders enough from express source to raise the expedited inventory position
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to S. If the expedited inventory position at period t is above S, then πr,S orders nothing
from the express source. Formally, under πr,S, for all period t ≥ 1 we have:

qRt = r

qEt = max(0, S − Ît)

3 Proximal Policy Optimization (PPO)

In this section, we develop a variant of Proximal Policy Optimization the finding the near
optimal policies for dual-sourcing inventory problem.

3.1 Policy Gradient Methods

Let πθ(a | s) be a stochastic policy modeled with a parameterized function respect to θ
(usually a neural network). Policy gradient methods learn to maximize the expected reward
following a parameterized policy based on the gradient of some performance measure J(θ).

A standard objective used to generate the gradient estimator is

LPG(θ) = Êt

[
log πθ (at | st) Ât

]
,

where Ât is an estimator of the advantage function at timestep t, and Êt [. . . ] is the empirical
average over a finite batch of samples.

3.2 Clipped Surrogate Objective

In Policy Gradient, we use samples from the current policy to compute the policy gradient,
so we need new samples for each gradient we compute. To reuse sample, we can use a
surrogate objective using importance sampling:

LCPI(θ) = Êt

[
πθ (at | st)
πθold (at | st)

Ât

]
= Êt

[
rt(θ)Ât

]
,

where CPI refers to conservative policy iteration [3], and rt(θ) denote the probability ratio

rt(θ) = πθ(at|st)
πθold (at|st)

. It’s not hard to see that the gradients for the original and surrogate

objective are the same:

∇θ log πθ (at | st)|θold =
∇θπθ (at | st)|θold
πθold (at | st)

= ∇θ

(
πθ (at | st)
πθold (at | st)

)∣∣∣∣
θold

However, maximizing LCPI would result in large policy updates and unstable policies
without a constraint. Hence, Schulman et al.[4] proposed a clipped surrogate objective

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), ε) Ât

)]
,
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where clip (rt(θ), ε) =


x if x ∈ [1− ε, 1 + ε]

1 + ε if x > 1 + ε

1− ε if x < 1− ε
.

For a single timestep t, if A > 0,

min(rA, clip(r, ε)A) =

{
rA if r ≤ 1 + ε

(1 + ε)A if r > 1 + ε
;

if A < 0,

min(rA, clip(r, ε)A) =

{
rA if (1− ε) ≤ 1− ε
rA if r > 1− ε

.

Notice that LCLIP (θ) = LCPI(θ) when rt(θ) is close to 1 (i.e., when θ is close to θold).

3.3 Actor-Critic Framework

In addition to learning the policy, Actor-Critic methods learn approximation to both policy
and value functions. It consists of two models:

• An actor which updates the policy parameter θ corresponding to the policy πθ(a | s);

• And a critic which updates a value function parameter φ usually corresponding to a
state-value function Vφ(s) or a action-value function Qφ(a | s).

In this project, we use TD(1) to estimate the value function. At each iteration, let the
estimated value function be

V̂ πk (st) =
T∑
k=t

γkrk.

Then, fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ (st)− V̂ πk (st)

)2
.

where Dk is the trajectory by running policy πθk in the environment.

3.4 Multiple epochs for policy updating

The Clipped Surrogate Objective function allows us to run multiple epoch of gradient ascent
on the same sample while maintaining meaningful policy updates.

In each iteration, PPO runs the policy using Q parallel actors, collecting T timesteps
of date. Then we construct the clipped surrogate loss on these QT timesteps of data, and
optimize it with minibatch Stochastic Gradient Ascent for N epochs. The full PPO algorithm
is described in Algorithm 1 below.
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Algorithm 1: PPO

Input : initial policy parameter θ0, initial value function parameter φ0

Output: final policy parameter θK
1 for iteration k = 0, 1, 2, . . . K − 1 do
2 for actor q = 1, 2, . . . , Q do
3 Collect trajectory Dk,q = {s(0,q), a(0,q), s(1,q), a(1,q), . . . , s(T,q), a(T,q)} by running

policy πθk in environment for T timesteps

4 Compute estimated value function V̂ πk(s(t,q))

5 Compute estimated advantage function Âπθk (s(t,q), a(t,q)) based on current
value function Vφk

6 end
7 Update the policy parameter by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

Q∑
q=1

T∑
t=0

min
(
r(t,q)(θ)Âπθk

(
s(t,q), a(t,q)

)
, Clip

(
r(t,q)(θ), ε

)
Âπθk

(
s(t,q), a(t,q)

))

using stochastic gradient ascent with Adam, where r(t,q)(θ) =
πθ(a(t,q)|s(t,q))
πθk(a(t,q)|s(t,q))

8 Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

Q∑
q=1

T∑
t=0

(
Vφ (st)− V̂ πk(s(t,q))

)2
using stochastic gradient descent with Adam

9 end

4 Implementation Details

In this section, we will discuss some key observations we made during our implementation
of the model environment and PPO algorithm.

4.1 Truncated State and Action Space

Even though we would desire to implement the model environment exactly as it is described
in Section 1.2, there are some implementation difficulties. Firstly, the Multidiscrete space
in Python gym package requires us to specify an upper bound, i.e. it does not allow infinite
state/action space. In addition, the Multidiscrete space does not allow negative values
while the model itself actually allows back-order (negative values).

One key observation we made is if a policy is sufficiently good, then it will never lead to
extremely large order or extremely large inventory (back-orders), i.e. it will keep inventory
close to 0, while making smaller orders at a regular frequency. As a result, if a policy can
perform well in a bounded state space (with specified maximum inventory/back-orders) and
bounded action space (with maximum orders that can be made), it will perform well in
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the infinite space settings as it should never escape the original bounded state/action space.
With this in mind, we implemented the given model with a truncated state and action space.

With bounded state space, the second problem becomes easy to solve. Let Imax ∈ Z+

denote the max inventory (back-order) allowed. We can then shift the inventory from
{−Imax, . . . , Imax} to {0 . . . , 2Imax} to avoid having negative values in a the Multidiscrete

space.

4.2 Initial Policy

The other important observation is that initial policy really affects the performance of PPO
algorithm. Good initial policy generally leads to better results.

In order to get a sufficiently good initial policy, we firstly sample a subset of the state
space, and generate labels (action) using a deterministic TBS policy as discussed in Sec-
tion 2.1 to create a training dataset. Randomly shuffle the training set and group data
into mini batches, we then train a feed forward neural network with the generated training
dataset with batch gradient descent to get the initial policy.

In Section 5.2, we will present the result of PPO with or without initialization.

5 Experimental Results

In this section, we discuss the experimental results. We will first introduce the two set of
model parameters we used to experiment our algorithm with. We present the results of our
implemented PPO algorithms and compare it with TBS policies and algorithms from other
group. Finally we will visualize the policy generated to see how it works.

5.1 Instances Set-up

To set up the experiment, we will have to specify the model parameters. In particular, we
consider the following two configurations.

LR LE cR cE h b λ mA mI starting state
Config 1 3 1 100 105 1 99 5 20 1000 [0,0,0,0,0]
Config 2 3 1 100 105 1 19 10 20 1000 [0,0,0,0,0]

Table 1: Two different model parameters set-up.

Note mA indicates the maximum number of orders we can make (from either sources) and
mI indicates the maximum number of inventory (back-orders) allowed. Instead of starting
with a random state as described in Section 1.2, we will just assume we start with no incoming
orders and 0 inventory.

5.2 Numerical Results

For both configurations, we generate an initial policy by training with the optimal TBS
policy (r = 4, S = 15 for Config 1 and r = 9, S = 15 for Config 2). We then use it as the
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initial policy to feed into PPO algorithm. We summarize the results in Table 2.

initial PPO PPO (no init) A2C Optimal TBS
Config 1 -607 -544 -3473 -540 -517
Config 2 -1113 -1054 -4775 -1048 -1019

Table 2: Average reward of different policies.

As we observed from Table 2, initialization drastically improve the performance. Given
a sufficiently good initial policy, PPO algorithm were able to improve on it and produce
a better policy. In addition, the performance of PPO and A2C algorithms is pretty close
with PPO having slighly worse average reward. However, both algorithms failed to beat the
optimal TBS policy.

We also ran a simulation of 1000 time steps under both configurations using initial, PPO
and optimal TBS optimal. It is clear from Figure 1 that all three policies converges in the
sense that the average reward stabilizes after certain steps.

Figure 1: Average rewards simulation of intial, PPO, and optimal TBS policies under Config1
(left) and Condif2(right) for 1000 time steps.

5.3 Policy Visualization

We create some heatmaps to visualize the different policies. The figures below plot the action
for express source (that is, the probability distribution for the number of order placed from
express source) following different policies under configuration 1 and state space [4, 4, 4, 4, x]
where x ∈ [−30, 30] is the current inventory. We can see that the initial policy almost always
place no order from the express source, and the PPO-trained policy placed 19 with higher
probability when the inventory is low.

6 Conclusion

In this final project, we investigate the dual-sourcing inventory problem and implement
model environment and PPO algorithm to try to solve this problem with deep reinforcement
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Figure 2: Number of order placed from express source following optimal TBS policy, initial
policy, and PPO policy

learning approach. The policy produced by our PPO algorithm is sufficiently good, but still
not as good as some of the existing heuristic approach, TBS policy.

Some potential future work might include exploring how neural net structure of our
policy can affect the result of the PPO algorithm for this problem. We only used one linear
hidden layer for our PPO policy in our experiment, but it might be the case that more
complex neural net would help. In addition, as indicated in [2], implementation details
can hugely affect the performance of PPO algorithms. Reward normalization and Adam
annealing (adjust the learning rate of critic network as we progress) would be some potential
techniques we could use to improve the performance of PPO in the future.

7 Github repository

All our code will be pushed to the our Github repository: https://github.coecis.cornell.
edu/hl2359/6590-project.
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