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Problem setup

• A central hub

• Flights to and from L different destinations

• Single- and two-leg itineraries

• High- and low-fare tickets

• All flights have same number of available seats

• Epoch of time within which all bookings must be made
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Model (DTMC)

Problem inputs:

1. L, locations gives us 2L flight legs and n = 2L(L + 1) total possible bookings

2. κ, the seat capacity of each flight leg

3. τ , the deadline for all bookings

At each discrete time step, ≤ 1 customer arrives and attempts to make a single booking.

Randomly generated other data for each L ∈ {3, 5} to fully describe the problem instance:

• Probabilities:

• no customer arrives: 0.2

• itinerary probabilities come from numpy.random.uniform scaled to sum to 0.8

• low-fare bookings: 0.75 of the itinerary probability

• high-fare bookings: 0.25 of the itinerary probabilities.

• Revenue: the cost of each low-fare booking comes from numpy.random.randint on the

interval [15, 50). High-fare booking cost 5 times low-fare ones.
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Model (DTMC)

• The state space is the set of all possible available seats for every flight into and out of

each location up to the full capacities.

• The action space is all possible binary vectors of length n which tells you whether a

customer (with a specific fare and itinerary) is accepted or declined by the airline company.

• The one-step reward is the revenue gained from applying the predetermined action (of this

time-step) to a customer who appears during this time-step.
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Implementation

Used PPO, part of stable-baselines3.

Cloned stable-baselines3 in order to change aspects of the source code, as well as adjust

in-line hyperparameters.

To evaluate the performance of PPO as we made changes, we compared outputs for the small

case L = 3, τ = 20, κ = 2. Our criteria for a good RL algorithm were 3-fold:

• the policy/its performance had converged;

• the policy performed comparably to prior approaches to the problem;

• the variance between different random evaluations of the policy was low: its performance

was consistent with respect to random arrivals.

4



Advantage estimation

With the aim of variance reduction, we explored four ways of estimating the advantage

function:

• generalized advantage estimator

• simple cumulative moving average

• weighted moving average

• double exponential moving average
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Advantage estimation

Recall that the estimate of advantage of the action at is defined as

δVt := rt + γV (st+1)V (st),

where V is an approximate value function. A k-step estimate of the returns, minus a baseline

is defined as [5]

Â
(k)
t :=

k−1∑
l=0

γ lδVt+l .

As k →∞, we get A
(∞)
t which is the empirical returns minus the value function.
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Advantage estimation: Generalized advantage estimator (GAE)

GAE is a truncated exponentially-weighted average of k-step estimators defined as follows [5]

Ât = (1− λ)
k−1∑
l=0

λlA
(1+l)
t =

k−1∑
l=0

(γλ)lδVt+l

Convergence: 300k iterations. Reward: 715.866. Standard deviation: 28.967.

Figure 1: Mean vs. policy iterations Figure 2: Std vs. policy iterations 7



Advantage estimation: Double exponential smoothing (DES)

DES puts more weights on the recent values, hoping to remove lag associated with moving

average [4]. (Convergence: 200k iterations. Reward: 827.533. Standard deviation: 25.386.)

s0 = 0.0, b0 = δVt

sl = αδVt+l + (1− α)γ(sl−1 + bl − 1), bl = β(sl − s) + (1− β) ∗ b, l = 1, dots, k

Figure 3: Mean vs. policy iterations Figure 4: Std vs. policy iterations
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Learning Rate

Default 0.0003, we tested larger ones to get faster convergence.

Ultimately used 0.003.

Mean revenue earned vs. number of PPO learn batches

Figure 5: Learning Rate =

0.03

Figure 6: Learning Rate =

0.003

Figure 7: Learning Rate =

0.0003
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Optimization Algorithms

Default Adam algorithm. Adamax is a variant of Adam with infinity norm [3]. SGD is a

state-of-art algorithm for solving optimization problems [6]. Adagrad includes more geometric

information from earlier iterations [2].

Mean revenue earned vs. number of PPO learn batches

Figure 8: Adamax Figure 9: SGD Figure 10: Adagrad
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Other Hyper-parameters

A few other hyper-parameters also provide interesting insight into our model:

• Buffer length: only changed runtime of algorithm, so we went with a middling value that

helped PPO converge quickest

• GAE parameter: large λ (closest to Monte-Carlo, further from Bellman) ensured variance

did not grow over time

• Discount factor: values much smaller than normally recommended in the literature led to

the fastest convergence to largest solutions
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Insights

• Discount factor: since the problem works over very small, and perpetually decreasing,

future window, found that lower discount factors than commonly suggested in the

literature worked best for our problem instance

• Adjusting epoch length: for fixed seat capacities, higher epochs lead to policies that favor

high-fare and single-leg seats. Following Adelman, we doubled epoch and seat capacity

together, preserving their ratio, which led to a roughly linear growth of the means.

• Punishment: any reasonable number of PPO iterations ensures that we almost always sell

all the seats. Therefore a punishment factor to the reward function for finishing an epoch

with seats remaining made little change to the final policies.
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Numerical results and conclusion

L τ κ
PPO

# timesteps # episodes DBPC Mean (std. err.)
Mean Std

3

20 2 764.2925 6.989 800,000 500 567.78 (20.54)

50 6 1790.6675 13.815 800,000 500 1,759.91 (33.76)

100 12 3744.49875 20.998 800,000 500 3,730.04 (53.87)

200 24 7551.33625 33.774 800,000 500 7,683.04 (70.09)

500 61 20884.3325 65.567 800,000 500 19,793.50 (132.23)

5

20 1 112.816 3.322 500,000 500 486.92 (17.86)

50 4 1233.67 17.022 1,000,000 500 1,874.34 (36.70)

100 8 3237.696 31.583 1,000,000 500 3,905.97 (50.49)

200 16 7369.488 50.794 1,000,000 500 8,109.55 (73.00)

500 42 21938.526 95.407 1,000,000 500 21,189.10 (125.73)
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Numerical results and conclusion

• For L = 3, our results are competitive with the results in Adelman [1].

• For L = 5, our results did not quite reach convergence (and further, that PPO performed

very poorly when the seat capacities were 1).

• More iterations would likely improve the performance of the L = 5 cases.

(e.g. for L = 5, τ = 50 and κ = 4, the result improves from 1233.67 to 1619.12 if we

increase the iterations from 1,000k to 5,000k)

Figure 11: Mean revenue earned vs. number of PPO learn batches
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