Airline Revenue Mangement

Tao Jiang Laurel Newman

ORIE 6590 Spring 2021

- A central hub
- Flights to and from *L* different destinations
- Single- and two-leg itineraries
- High- and low-fare tickets
- All flights have same number of available seats
- Epoch of time within which all bookings must be made

Model (DTMC)

Problem inputs:

- 1. L, locations gives us 2L flight legs and n = 2L(L + 1) total possible bookings
- 2. $\kappa,$ the seat capacity of each flight leg
- 3. $\tau,$ the deadline for all bookings

At each discrete time step, ≤ 1 customer arrives and attempts to make a single booking.

Randomly generated other data for each $L \in \{3, 5\}$ to fully describe the problem instance:

- Probabilities:
 - no customer arrives: 0.2
 - itinerary probabilities come from numpy.random.uniform scaled to sum to 0.8
 - low-fare bookings: 0.75 of the itinerary probability
 - high-fare bookings: 0.25 of the itinerary probabilities.
- Revenue: the cost of each low-fare booking comes from numpy.random.randint on the interval [15,50). High-fare booking cost 5 times low-fare ones.

- The state space is the set of all possible available seats for every flight into and out of each location up to the full capacities.
- The action space is all possible binary vectors of length n which tells you whether a customer (with a specific fare and itinerary) is accepted or declined by the airline company.
- The one-step reward is the revenue gained from applying the predetermined action (of this time-step) to a customer who appears during this time-step.

Used PPO, part of stable-baselines3.

Cloned stable-baselines3 in order to change aspects of the source code, as well as adjust in-line hyperparameters.

To evaluate the performance of PPO as we made changes, we compared outputs for the small case L = 3, $\tau = 20$, $\kappa = 2$. Our criteria for a good RL algorithm were 3-fold:

- the policy/its performance had converged;
- the policy performed comparably to prior approaches to the problem;
- the variance between different random evaluations of the policy was low: its performance was consistent with respect to random arrivals.

With the aim of variance reduction, we explored four ways of estimating the advantage function:

- generalized advantage estimator
- simple cumulative moving average
- weighted moving average
- double exponential moving average

Recall that the estimate of advantage of the action a_t is defined as

$$\delta_t^{\boldsymbol{V}} := rt + \gamma \boldsymbol{V}(\boldsymbol{s}_{t+1}) \boldsymbol{V}(\boldsymbol{s}_t),$$

where V is an approximate value function. A *k*-step estimate of the returns, minus a baseline is defined as [5]

$$\hat{A}_t^{(k)} := \sum_{l=0}^{k-1} \gamma^l \delta_{t+l}^V.$$

As $k \to \infty$, we get $A_t^{(\infty)}$ which is the empirical returns minus the value function.

Advantage estimation: Generalized advantage estimator (GAE)

GAE is a truncated exponentially-weighted average of k-step estimators defined as follows [5]

$$\hat{A}_t = (1 - \lambda) \sum_{l=0}^{k-1} \lambda^l A_t^{(1+l)} = \sum_{l=0}^{k-1} (\gamma \lambda)^l \delta_{t+l}^V$$

Convergence: 300k iterations. Reward: 715.866. Standard deviation: 28.967.

Figure 1: Mean vs. policy iterations

Figure 2: Std vs. policy iterations

Advantage estimation: Double exponential smoothing (DES)

DES puts more weights on the recent values, hoping to remove lag associated with moving average [4]. (Convergence: 200k iterations. Reward: 827.533. Standard deviation: 25.386.)

$$\begin{split} s_0 &= 0.0, & b_0 = \delta_t^V \\ s_l &= \alpha \delta_{t+l}^V + (1-\alpha) \gamma(s_{l-1} + bl - 1), & b_l = \beta(s_l - s) + (1-\beta) * b, \quad l = 1, \, dots, \, k \end{split}$$

Figure 3: Mean vs. policy iterations

Figure 4: Std vs. policy iterations

Learning Rate

Default 0.0003, we tested larger ones to get faster convergence.

Ultimately used 0.003.

Mean revenue earned vs. number of PPO learn batches

Optimization Algorithms

Default Adam algorithm. Adamax is a variant of Adam with infinity norm [3]. SGD is a state-of-art algorithm for solving optimization problems [6]. Adagrad includes more geometric information from earlier iterations [2].

Mean revenue earned vs. number of PPO learn batches

A few other hyper-parameters also provide interesting insight into our model:

- Buffer length: only changed runtime of algorithm, so we went with a middling value that helped PPO converge quickest
- GAE parameter: large λ (closest to Monte-Carlo, further from Bellman) ensured variance did not grow over time
- Discount factor: values much smaller than normally recommended in the literature led to the fastest convergence to largest solutions

- Discount factor: since the problem works over very small, and perpetually decreasing, future window, found that lower discount factors than commonly suggested in the literature worked best for our problem instance
- Adjusting epoch length: for fixed seat capacities, higher epochs lead to policies that favor high-fare and single-leg seats. Following Adelman, we doubled epoch and seat capacity together, preserving their ratio, which led to a roughly linear growth of the means.
- Punishment: any reasonable number of PPO iterations ensures that we almost always sell all the seats. Therefore a punishment factor to the reward function for finishing an epoch with seats remaining made little change to the final policies.

Numerical results and conclusion

L	τ	κ	PPO		// timestone	-// opicodoc	DPDC Moon (std. arr.)
			Mean	Std	# timesteps	# episodes	DDFC Mean (std. err.)
3	20	2	764.2925	6.989	800,000	500	567.78 (20.54)
	50	6	1790.6675	13.815	800,000	500	1,759.91 (33.76)
	100	12	3744.49875	20.998	800,000	500	3,730.04 (53.87)
	200	24	7551.33625	33.774	800,000	500	7,683.04 (70.09)
	500	61	20884.3325	65.567	800,000	500	19,793.50 (132.23)
5	20	1	112.816	3.322	500,000	500	486.92 (17.86)
	50	4	1233.67	17.022	1,000,000	500	1,874.34 (36.70)
	100	8	3237.696	31.583	1,000,000	500	3,905.97 (50.49)
	200	16	7369.488	50.794	1,000,000	500	8,109.55 (73.00)
	500	42	21938.526	95.407	1,000,000	500	21,189.10 (125.73)

Numerical results and conclusion

- For L = 3, our results are competitive with the results in Adelman [1].
- For L = 5, our results did not quite reach convergence (and further, that PPO performed very poorly when the seat capacities were 1).
- More iterations would likely improve the performance of the L = 5 cases.
 (e.g. for L = 5, τ = 50 and κ = 4, the result improves from 1233.67 to 1619.12 if we increase the iterations from 1,000k to 5,000k)

References i

Daniel Adelman.

Dynamic bid prices in revenue management.

Operations Research, 55(4):647-661, 2007.

🥫 John Duchi, Elad Hazan, and Yoram Singer.

Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

Diederik P Kingma and Jimmy Ba.

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Patrick G Mulloy.

Smoothing data with faster moving averages.

Stocks & Commodities, 12(1):11–19, 1994.

- John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. **High-dimensional continuous control using generalized advantage estimation.** <u>arXiv preprint arXiv:1506.02438</u>, 2015.
- Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
 On the importance of initialization and momentum in deep learning.
 In International conference on machine learning, pages 1139–1147. PMLR, 2013.