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1 Introduction

The Airline Revenue Management problem considers the goal of optimizing revenue for a
hub which services L different destinations. The hub handles flights into and out from these
L locations in both single and two leg itineraries. Every possible itinerary additionally has
a high-fare and low-fare class. We use m = 2L to denote the total number of single-leg
itineraries and n = 2L(L+ 1) to denote the total number of fare and itinerary combination
classes that a customer could belong to.

Previous work has used dynamic programming by Talluri and van Ryzin [14], and from
the dynamic program some work has been done on using linear programming to approximate
it by Adelman [1]. The approximation was first considered by Schweitzer and Seidmann [12]
and de Farias and Van Roy [5]. Bertsimas and Popescu [3] have also computed exact value
functions while Bertsimas and de Boer [2] have worked on simulation-based methods for
estimating gradients. We will specifically compare our RL approach against some of the LP
approaches (including relaxation and column generation) from Table 6 in Adelman [1].

Our project used reinforcement learning to optimize the revenue gained by determining
which customer classes to allow to book flights over a period while there still remains capac-
ity for seats on some flights. The Markov decision process formulation is presented in Section
2. The specific choices of model inputs are included in Section 3. To solve the airline revenue
problem, we adopted proximal policy optimization (PPO) algorithms. Section 4 gives a brief
introduction of PPO and states the objective function. Our main contributions of the project
are exploring other methods of advantage estimation to reduce variance and tuning hyper-
paramters of PPO to boost performance. Based on the existing Stable-Baselines3.PPO,
we added our own script for advantage estimation. We elaborate various methods of advan-
tage estimation and report the numerical results in Section 5. In Section 6, we illustrate
the effect of multiple hyper-parameters on the performance of the algorithm. Such hyper-
parameters include learning rate, rollout buffer length, GAE parameter λ, discount factor
and optimization algorithms. Finally, we report the numerical experiments in Section 8.
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2 Markov Decision Process Formulation

The state space is the set of all possible available seats for every flight into and out of each
location up to the full capacities. The action space is all possible binary vectors of length
n which tells you whether a customer (with a specific fare and itinerary) is accepted or
declined by the airline company. The one-step reward is the revenue gained from applying
the predetermined action (of this time-step) to a customer who appears during this time-step
(at most one will do so). The transitions are of the form as shown below. We include our
choice of parameters in Section

• state = c = [...ci...cj...];

• action[k] = 1;

• customerClass = k;

• customerDemand = d = [0, ..., di, ..., dj, ..., 0], c− d ≥ 0, i 6= j, di, dj not both 0);

• newState = c− d (noticeably, this will only differ at indices i and j)

All other transitions lead to newState = state.

3 Model

We specifically wanted to compare against Table 6 from [1], so we constructed our model to
be the same as theirs.

We first describe the parameters which we vary to describe different problem instances.

1. The number of connected travel locations to our central hub is denoted L, and there
are thus 2L different incoming and outgoing aircraft (that is, 2L “legs” of any possible
flight itinerary). Recall that there all itineraries are either one- or two-legged and that
each itinerary has a low- and high-fare version, such that we have n = 2L(L + 1)
possible bookings for any customer to choose from.

2. Each aircraft is given a fixed, identical number of seats, and we let κ denote the capacity
of each leg.

3. We also have a deadline by which all bookings must be made. That is, our problem
instance is given a specific time limit within which all flight bookings must occur, and
we denote our booking epoch by τ .

Thus, a single version of this model is described by the tuple (L, τ, κ) and specific instances
of these versions are then determined by randomly generating the following data:

• Revenue gained from any of the n possible bookings: the revenue gained from the
low-fare itineraries was generated by numpy.random.randint on the interval [15, 50).
The revenue for the high-fare itineraries was generated by scaling the previous vector
by 5.
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• Probability of each of n possible booking: at each time step at most one customer
arrives and makes a single booking. Firstly, we fixed the probability that no customer
arrived to be 0.2. Next, we generated the probability of any specific itinerary by
scaling numpy.random.uniform into a distribution with n/2 discrete values and a sum
of 0.8. We then weighted the distribution by 0.75 to construct the probability for
low-fare itineraries and weighted the distribution by 0.25 to construct the probability
for high-fare itineraries.

It is worth noting that while Adelman was able to compare all their approximations on
a specific instance of this model, we were not able to compare to this exact instance (since
it is randomly generated), so instead we generated our own random instance for both the
L = 3 and L = 5 version of the model, and considered the different cases over both of these
instances (see Appendix A).

4 Policy Proximal Optimization

To solve the airline revenue management problem, we employed the proximal policy opti-
mization algorithm algorithm (PPO) from Stable-Baselines3. The algorithm PPO combines
the idea of A2C and TRPO and solves problems with multi-discrete action space.

Prior to PPO, there are two main types of methods to solve policy optimization: policy
gradient methods and trust region methods. The policy gradient methods adopt a stochas-
tic gradient ascent (SGD) algorithm and compute an estimator of the policy gradient for
the SGD update. The trust region policy optimization methods (TRPO) maximize the
”surrogate objective” with the constraints that force a conservative policy update.

In the theory of TRPO, Schulman et al. [9] suggests a reformulation of the constrained
problem by adding a penalty to the objective function. Moreover, unconstrained optimization
problem Unfortunately, simply choosing a fixed penalty coefficients is not sufficient from
various numerical experiments. Moreover, optimizing the naive unconstrained version of
TRPO using SGD fails to work.

PPO was inspired by TRPO and first proposed by Schulman et al [11]. PPO attains the
efficient data sampling and reliable performance that TRPO achieves, while it only uses a
first-order methods. Moreover, PPO is also “simpler to implement” and “has better sample
complexity” compares to TRPO. It minimizes the following objective function:

max
θ
Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(1)

5 Advantage Estimation

We explored different ways of estimating the advantage function, with the aim of exploring
which method of variance reduction worked best for our problem. Four types of advantage
estimation are considered: generalized advantage estimator, simple cumulative moving av-
erage, weighted moving average and double exponential moving average. We rewrote the
function compute returns and advantage in class RolloutBuffer, which is located in the
file buffers.py in SB3.commons.
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Recall that the estimate of advantage of the action at is defined as

δVt := rt+ γV (st+1)V (st),

where V is an approximate value function. A k-step estimate of the returns, minus a baseline
is defined as

Â
(k)
t :=

k−1∑
l=0

γlδVt+l.

As k →∞, we get A
(∞)
t which is the empirical returns minus the value function.

Generalized advantage estimator

The generalized advantage estimator (GAE) is the state-of-art estimator for advantage func-
tion. It was first proposed by Schulman et al. [10] as a variance reduction scheme for policy
gradients. GAE was later adopted by PPO and implemented in SB3. It is the only method
used to estimate the advantage function in SB3. GAE is a truncated exponentially-weighted
average of k-step estimators defined as follows

Ât = (1− λ)
k−1∑
l=0

λlA
(1+l)
t =

k−1∑
l=0

(γλ)lδVt+l

Observe that the average reward converges at around 300 iterations. In the specific
instance below, the value converges to 715.866 after 500 iterations. Moreover, the mean of
the standard deviation of the average reward is 28.967.

Figure 1: Mean vs. policy iterations Figure 2: Std vs. policy iterations
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Simple cumulative moving average (SCMA)

We started off our own exploration from the simple cumulative moving average of k-step
estimators, which is defined as follows

Ât =
1

k

k−1∑
l=0

A
(1+l)
t =

k−1∑
l=0

k − l
k

γlδVt+l

Notice that SCMA does not converge within 300 iterations. At 500 iterations, the av-
erage reward attains a value of 573.433. The average reward first increases then decreases.
Furthermore, the average reward has a average standard deviation at 35.520, increasing over
time. The trend of non-monotonic average reward and increasing standard deviation indicate
that the simple cumulative moving average is bad estimator for the advantage function.

Figure 3: Mean vs. policy iterations Figure 4: Std vs. policy iterations

Weighted moving average (WMA)

We then moved on to the weighted moving average of k-step estimators, which is defined as
follows

Ât =
2

k(k + 1)

k−1∑
l=0

(k − l)A(1+l)
t

Compared to GAE, it takes slightly longer for the PPO with WMA to converge. The
average reward converges after 400 iterations. The final reward at the 500-th iteration
achieves a value of 591.8, which is lower than the average reward yielded by GAE. The
standard deviation is 27.416, which is slightly better than the PPO with GAE.
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Figure 5: Mean vs. policy iterations Figure 6: Std vs. policy iterations

Double exponential smoothing (DES)

Following the spirit of GAE, we also implemented the double exponential moving average of
k-step estimators, which is defined as below. It was first proposed by Mulloy et al. [8]. DES
puts more weights on the recent values, in the hope of removing lag associated with moving
average. It has been one of the best cited method to estimate and predict time-series data.

s0 = 0.0

b0 = δVt

sl = αδVt+l + (1− α)γ(sl−1 + bl − 1), l = 1, dots, k

bl = β(sl − s) + (1− β) ∗ b, l = 1, . . . , k

Ât = sk

Figure 7: Mean vs. policy iterations Figure 8: Std vs. policy iterations

Observe that there is a trend of improvement for the average reward with more iterations.
The reward converges after about 300 iterations. The final reward value attains 827.533. The
standard deviation increases quickly over iterations, and the average standard deviation is
25.386.
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Among all the estimators, DES has the highest average reward and lowest standard
deviation. However, the standard deviation increases much faster GAE. Thus, we continue
using GAE as we explored the effect of other hyperparameters.

6 Hyperparameters

Once we had decided to use PPO we modified source code from the stable-baselines3

library in order to tailor the algorithm to our problem. For all these tests, we used the L = 3,
τ = 20, and = 2 tuple problem instance, having generated and saved a random version of this
instance, which all tests were run upon such that our comparisons were minimally affected
by randomization. We ran batches of 1000 timesteps of PPO’s learn function, and for each
batch we then evaluated the current policy 10 times, averaging the results and finding their
standard deviation.

6.1 Learning Rate

We began with learning rate, since we wanted to find a learning rate that converged to a
competitive value in a reasonable amount of time (we favored around 500,000 iterations as
a maximum – as when gathering data to see how the policy changed over time to help tune
the rest of the hyperparameters, this many iterations took around a half hour to run for
each example. Later on when actually acquiring our numerical results we were able to use
longer runtimes as we had less data to gather during each iteration). The standard learning
rate is 0.0003, as shown in Figure 11, so we tested a few larger learning rates, to speed up
convergence. We found that by the time we were as large as 0.03 (see Figure 9) we did not
learn at all since the rate was too large, so we decided upon 0.003 (see Figure 10) as an
optimal compromise between speed and solution competitiveness.

Mean revenue earned vs. number of PPO learn batches

Figure 9: Learning Rate = 0.03 Figure 10: Learning Rate = 0.003 Figure 11: Learning Rate = 0.0003

6.2 Rollout Buffer Length

We tested scaling values for the rollout buffer length that reduced minibatches to size 2 and
increased them to be the whole number of steps per each update. However, this did not
ultimately affect the quality of the results, only the speed at which the algorithm ran, being
slower for very small minibatch size, and requiring more total timesteps to reach a similar
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convergence for very large minibatch size. Thus, we left this value as its default middling
value of 64 compared to 2048 steps.

6.3 GAE parameter

This hyperparameter weights how much we depend on the previous time steps when esti-
mating the advantage function, and helps with variance reduction. Note that when λ = 1
we have Monte Carlo and when λ = 0 we have one-step Bellman. Examining various values
of λ, we clearly saw that as lambda decreased, our standard deviation increased over more
iterations. Thus, we resolved to continue with large λ moving forwards.

Std dev. of revenue vs. number of PPO learn batches

Figure 12: λ = 0.8 Figure 13: λ = 0.5 Figure 14: λ = 0.2

6.4 Discount Factor

The discount factor, gamma, was important to us to consider since its default of 1 prioritizes
looking all the way into the future for the rewards. While this superficially might seem
sensible for our problem, since we have fixed halt conditions and only really care about the
final reward, we were concerned that it encouraged too much look ahead as the epoch drew
to a close. Noticeably, we indeed found that much smaller γ (see Figures 19 and 20) values
than usually recommended by the literature worked the best – converging sooner and to
higher values than γ = 0.95 (Figure 18).

Mean revenue earned vs. number of PPO learn batches

Figure 15: γ = 0.95 Figure 16: γ = 0.5 Figure 17: γ = 0.1

6.5 Optimization algorithms

To solve PPO, many authors such as Dai and Gluzman [4] use the Adam algorithm within
TensorFlow or Pytorch. Besides Adam, we solved our PPO using other first-order methods
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such as Adamax, SGD, Adagrad. Adamax is a variant of Adam with infinity norm [7]. SGD is
a state-of-art algorithm for solving optimization problems. Sutskever1 et al. [13] highlight
the importance of SGD in the framework of deep learning. Adagrad was introduced by Douchi
et al. [6]. While inheriting the merits from gradient-based learning, Adagrad includes more
geometric information from earlier iterations. Among all three algorithms, Adamax is the
best option with a similar performance as Adam. Adam is then adopted to be our primary
algorithm for the numerical experiments.

Mean revenue earned vs. number of PPO learn batches

Figure 18: Adamax Figure 19: SGD Figure 20: Adagrad

Std dev. of revenue vs. number of PPO learn batches

Figure 21: Adamax Figure 22: SGD Figure 23: Adagrad

7 Insights

Besides the input data given in table (6), we also ran a few tests varying epoch length for
fixed seat capacity and L. As expected, longer epochs shifted the policy towards high-fare
seats, and very high epochs (such as 100 when L = 3 and κ = 2) shifted the policy towards
only the single-leg high-fare seats. Thus we note that in our Numerical Results section, the
near doubling of revenue each time we double both the seat capacity and the epoch length
depends on preserving that ratio between epoch length and seat capacities.

With any reasonable number of PPO iterations (10, 000 PPO iterations for instance was
more than enough), we quickly learn a policy which ensured that for most of the instances
we always sell out all the seats. Thus, while we did experiment with adding a “punishment”
factor to the reward function if we should reach the end of the epoch and still have seats
remaining, we found that such a factor did not improve the policy.
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8 Numerical Results

We summarize our experiment as shown below: It is worth noting that while most of our

L τ κ
PPO

# timesteps # episodes Adelman DBPC Mean (std. err.)
Mean Std

3

20 2 764.2925 6.989 800,000 500 567.78 (20.54)
50 6 1790.6675 13.815 800,000 500 1,759.91 (33.76)
100 12 3744.49875 20.998 800,000 500 3,730.04 (53.87)
200 24 7551.33625 33.774 800,000 500 7,683.04 (70.09)
500 61 20884.3325 65.567 800,000 500 19,793.50 (132.23)

5

20 1 112.816 3.322 500,000 500 486.92 (17.86)
50 4 1233.67 17.022 1,000,000 500 1,874.34 (36.70)
100 8 3237.696 31.583 1,000,000 500 3,905.97 (50.49)
200 16 7369.488 50.794 1,000,000 500 8,109.55 (73.00)
500 42 21938.526 95.407 1,000,000 500 21,189.10 (125.73)

results for L = 3 are competitive with the results in Adelman, this is not the case for L = 5,
where we our results did not quite reach convergence (and further, that PPO performed
very poorly when the seat capacities were 1). The performance for L = 3 suggests that if
we ran PPO for longer for all instances, we would approach the LP bounds from Adelman.
To demonstrate the degree to which more iterations would likely improve the performance
of the L = 5 cases, we show in Figure 24 the results of a run with 5,000,000 time steps for
L = 5, τ = 50 and κ = 4. In this case, we improve the revenue to have mean 1619.12 (our
standard deviation, 74.015, is worse since we consider only 10 episodes of policy evaluation).

Figure 24: Mean revenue earned vs. number of PPO learn batches

Compared to our partner team who adopted A2C to solve the problem, our result is
strictly better. We hypothesized that PPO is a better reinforcement learning algorithm than
A2C. The other team’s result is attached in Appendix B.
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A Randomly Generated Instances

For L = 3 we randomly generated

self.revenue = np.array([33, 28, 36, 34, 17, 20, 39, 24, 31, 19, \

30, 48, 165, 140, 180, 170, 85, 100, 195, \

120, 155, 95, 150, 240])

self.probabilities = np.array([0.01327884, 0.02244177, 0.07923761, \

0.0297121, 0.02654582, 0.08408091, \

0.09591975, 0.00671065, 0.08147508, \

0.00977341, 0.02966204, 0.121162, \

0.00442628, 0.00748059, 0.02641254, \

0.00990403, 0.00884861, 0.02802697, \

0.03197325, 0.00223688, 0.02715836, \

0.0032578, 0.00988735, 0.04038733, \

0.2])

For L = 5 we randomly generated

self.revenue = np.array([38, 34, 39, 18, 48, 29, 40, 48, 22, 39, 45, 31, \

42, 40, 22, 16, 27, 35, 40, 42, 15, 42, 32, 40,\

36, 24, 41, 33, 33, 38, 190, 170, 195, 90, 240, \

145, 200, 240, 110, 195, 225, 155, 210, 200, 110, \

80, 135, 175, 200, 210, 75, 210, 160, 200, 180, \

120, 205, 165, 165, 190])

self.probabilities = np.array([0.01302623, 0.00630947, 0.0193087 , 0.03749824, \

0.0087251 , 0.02197966, 0.0230311 , 0.0250458 , \

0.02696926, 0.03631881, 0.00848936, 0.0169562, \

0.01757013, 0.01980117, 0.03372276, 0.00092609, \

0.01588487, 0.01056883, 0.02438527, 0.00747704, \

0.00655709, 0.01516504, 0.01366724, 0.02056504, \

0.03065696, 0.02719751, 0.03476736, 0.03692992, \

0.00394042, 0.03655934, 0.00434208, 0.00210316, \

0.00643623, 0.01249941, 0.00290837, 0.00732655, \

0.00767703, 0.0083486 , 0.00898975, 0.01210627, \

0.00282979, 0.00565207, 0.00585671, 0.00660039, \

0.01124092, 0.0003087 , 0.00529496, 0.00352294, \

0.00812842, 0.00249235, 0.0021857 , 0.00505501, \

0.00455575, 0.00685501, 0.01021899, 0.00906584, \

0.01158912, 0.01230997, 0.00131347, 0.01218645, \

0.2])
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B Comparison with partner team

L τ c Base MLP Shared GRU DBPC

3 20 2 364.29(150.89) 317.01(139.27) 188.17(108.42) 567.78(20.54)
50 6 845.68(247.119) 706.30(235.96) 737.47(228.16) 1759.91(33.76)
100 12 1546.01(341.09) 1556.57(342.26) 1543.84(336.87) 3730.04(53.87)
200 24 2913.53(488.92) 2901.09(487.35) 3107.65(521.16) 7683.04(70.09)
500 61 8189.19(850.59) 7257.78(754.45) 8089.46(832.38) 19793.50(132.23)

5 20 1 116.18(72.08) 106.38(72.87) 93.72(69.54) 486.92(17.86)
50 4 585.96(252.78) 608.05 (243.24) 654.85(250.75) 1874.34(36.70)
100 8 1489.12(457.99) 1641.90(449.97) 1650.27(459.54) 3905.97(50.49)
200 16 3660.86(792.38) 3942.27(775.49) 3625.08(742.68) 8109.55(73.00)
500 42 8698.46(1266.06) 8292.50(1140.22) 10985.99(1419.44) 21189.10(125.73)
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