# Deep Reinforcement Learning for Integer Programming

Akshay Ajagekar and Alyf Janmohamed

### **Potential Outline**

- 1. Brief overview of MDP (e.g. our reward)
- 2. Methods
  - a. Graph Neural Networks
  - b. DQN
  - c. DDQN
  - d. Prioritized Replay
  - e. Training Details
- 3. Results
  - a. Graph of performance
  - b. Table of performance

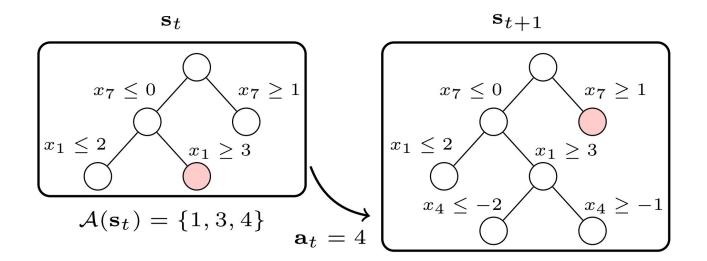
### **MDP** Overview

State

Action

Reward

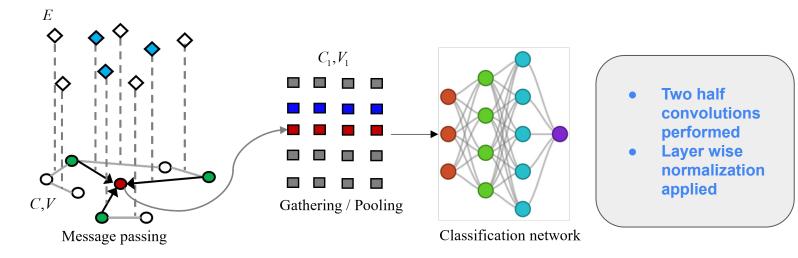
Transition



M. Gasse, D. Ch'etelat, N. Ferroni, L. Charlin, and A. Lodi, quot; Exact combinatorial optimization with graph convolutional neural networks, quot; arXiv preprint arXiv:1906.01629, 2019.

### Methods : Graph Neural Networks

• GNN used to parameterize state-action value function Q(s,a)



• Edge-conditioned filters used in the MPNN model

$$x'_{i} = (x_{i}W_{root} + b) + \sum_{j \in N(i)} x_{j}MLP(e_{ji})$$

### Methods : Algorithms

#### Deep Q-Network (DQN)

 $L_{DQN} = E_{(s,a,r,s')} \left[ \left( Q(s_t, a_t; \theta) - Y_t^{DQN} \right)^2 \right]$ 

•  $Q(s,a;\theta)$  and  $Q(s,a;\theta')$ 

$$Y_t^{DQN} = r_{t+1} + \gamma \max Q(s_{t+1}, a; \theta')$$

#### Double Deep Q-Network (DDQN)

• 
$$Q(s,a;\theta)$$
 and  $Q(s,a;\theta')$ 

• 
$$Y_t^{DDQN} = r_{t+1} + \gamma Q\left(s_{t+1}, \operatorname{argmax}_a Q\left(s_{t+1}, a; \theta\right); \theta'\right)$$

$$L_{DQN} = E_{(s,a,r,s')} \left[ \left( Q\left(s_t, a_t; \theta\right) - Y_t^{DDQN} \right)^2 \right]$$

• Soft update

$$\theta' \leftarrow \tau \theta + (1 - \tau) \theta'$$

| 1: 1. Initialisation:                                                            |    |
|----------------------------------------------------------------------------------|----|
| Load a simulation environment: price series, fill probability;                   |    |
| Initialise the value function $V_0$ and set the parameters: $\alpha, \epsilon$ ; |    |
| 2: 2. Optimisation:                                                              |    |
| 3: for episode = 1, 2, 3 do                                                      |    |
| 4: for $t = 1, 2, 3 T$ do                                                        |    |
| 5: Observe current state $s_t$ ;                                                 |    |
| 6: Take an action $a_t(Q_t, s_t, \epsilon)$ ;                                    |    |
| 7: Observe new state $s_{t+1}$ ;                                                 |    |
| 8: Receive reward $r_t(s_t, a_t, s_{t+1})$ ;                                     |    |
| 9: Update value function using $r_t$ and current estimate $Q_t$ :                |    |
| Compute targets and update Q(s,a)                                                |    |
| Compute targets and update Q(3,a)                                                |    |
| 10: end for                                                                      |    |
| 11: end for                                                                      | 29 |

### Methods - Training Details

• Implementation :



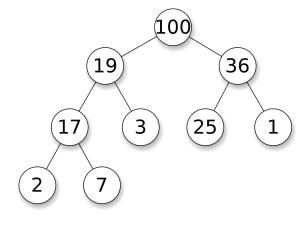
- Exploration performed by epsilon greedy strategy where the exploration rate is decayed at rate of 0.995
- Agent's memory buffer of size 5000 and sampled experiences with a batch size of 120.
- $\gamma = 0.99, \ \tau = 0.001$
- Data recording :



## Methods: Prioritized Replay (PER)

- Experience replay smoothes the training distribution over the previous history of the RL agent
- Prioritized replay is a method to weight the training distribution by the TD-error
- Can be implemented using a binary heap

#### **Tree representation**



Array representation

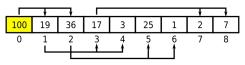
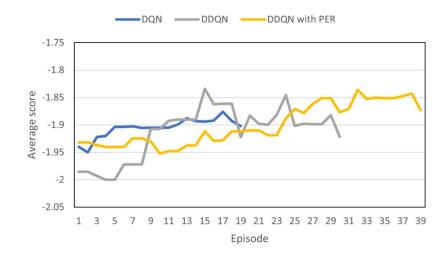


Image: https://en.wikipedia.org/wiki/Binary\_heap#/media/File:Max-Heap.svg

### Results



| Model         | Time (s)        | Nodes         |
|---------------|-----------------|---------------|
| SCIP          | $1.21 \pm 0.74$ | $16 \pm 25\%$ |
| DQN           | $1.12 \pm 0.3$  | $5 \pm 40\%$  |
| DQN with PER  | $1.41 \pm 0.88$ | $10 \pm 71\%$ |
| DDQN          | $0.92 \pm 0.23$ | $5 \pm 45\%$  |
| DDQN with PER | $1.04 \pm 0.35$ | $6 \pm 60\%$  |

### **Further Work**

- 1. Alternate reward functions
  - Can consider alternate metrics such as time at the node and information gained (e.g. improvement in bounds)?
- 2. Rules that generalize between problems
  - Can we identify rules that generalize beyond their class of problems? (e.g. set cover, capacitated facility location, max independent set)
- 3. Can we expand the decision space?
  - Node selection, cutting planes, etc.