
Deep Reinforcement Learning
for Integer Programming
Akshay Ajagekar and Alyf Janmohamed

Potential Outline

1. Brief overview of MDP (e.g. our reward)
2. Methods

a. Graph Neural Networks
b. DQN
c. DDQN
d. Prioritized Replay
e. Training Details

3. Results
a. Graph of performance
b. Table of performance

MDP Overview

State

Action

Reward

Transition

M. Gasse, D. Ch ́etelat, N. Ferroni, L. Charlin, and A. Lodi, quot;Exact combinatorial optimization with graph
convolutional neural networks,quot; arXiv preprint arXiv:1906.01629, 2019.

Methods : Graph Neural Networks

● GNN used to parameterize state-action value function Q(s,a)

● Edge-conditioned filters used in the MPNN model

● Two half
convolutions
performed

● Layer wise
normalization
applied

Methods : Algorithms

Deep Q-Network (DQN)

●

●

● Soft update

Double Deep Q-Network (DDQN)

●

●

Compute targets and update Q(s,a)

Methods - Training Details

● Implementation : +

● Exploration performed by epsilon greedy strategy where the exploration rate
is decayed at rate of 0.995

● Agent’s memory buffer of size 5000 and sampled experiences with a batch
size of 120.

●

● Data recording :

● Experience replay smoothes the
training distribution over the
previous history of the RL agent

● Prioritized replay is a method to
weight the training distribution by
the TD-error

● Can be implemented using a binary
heap

Methods: Prioritized Replay (PER)

Image: https://en.wikipedia.org/wiki/Binary_heap#/media/File:Max-Heap.svg

Results

Further Work

1. Alternate reward functions
○ Can consider alternate metrics such as time at the node and information gained (e.g.

improvement in bounds)?
2. Rules that generalize between problems

○ Can we identify rules that generalize beyond their class of problems? (e.g. set cover,
capacitated facility location, max independent set)

3. Can we expand the decision space?
○ Node selection, cutting planes, etc.

