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M. Gasse, D. Ch ́etelat, N. Ferroni, L. Charlin, and A. Lodi, quot;Exact combinatorial optimization with graph 
convolutional neural networks,quot; arXiv preprint arXiv:1906.01629, 2019.



Methods : Graph Neural Networks

● GNN used to parameterize state-action value function Q(s,a)

● Edge-conditioned filters used in the MPNN model

● Two half 
convolutions 
performed

● Layer wise 
normalization 
applied



Methods : Algorithms

Deep Q-Network (DQN)

●  

●  

● Soft update

Double Deep Q-Network (DDQN)

●  

●

Compute targets and update Q(s,a)



Methods - Training Details

● Implementation :                         +

● Exploration performed by epsilon greedy strategy where the exploration rate 
is decayed at rate of 0.995

● Agent’s memory buffer of size 5000 and sampled experiences with a batch 
size of 120.

●  

● Data recording :                      



● Experience replay smoothes the 
training distribution over the 
previous history of the RL agent

● Prioritized replay is a method to 
weight the training distribution by 
the TD-error

● Can be implemented using a binary 
heap

Methods: Prioritized Replay (PER)

Image: https://en.wikipedia.org/wiki/Binary_heap#/media/File:Max-Heap.svg



Results



Further Work

1. Alternate reward functions
○ Can consider alternate metrics such as time at the node and information gained (e.g. 

improvement in bounds)?
2. Rules that generalize between problems

○ Can we identify rules that generalize beyond their class of problems? (e.g. set cover, 
capacitated facility location, max independent set)

3. Can we expand the decision space?
○ Node selection, cutting planes, etc.


