Reinforcement
Learning for
Integer
Programming

ORIE 6590
May 17th, 2021

Connor Lawless & Logan Grout
Cornell University

Learning to Branch

Integer Programming

max cx
subject to Axr < b
x > 0 integral

Most modern solvers are built around the idea that we can solve LPs fast (both
theoretically and practically), so we solve IPs by solving a sequence of LPs

Branch & Bound

Key Idea: Recursively partition feasible region until we get integral solutions from
linear relaxation

T = 13, Ty = 3:3

z = 14.08
T S 1 T Z 2
11:1:1,.'172:3 :131:2,1'2:0.5
z=11.8 z=12.05
Prune by integrality zo <0 zo > 1

T, = 2.125, T, = 0

» — 11.6875 Infeasible

Prune by bound Prune by infeasibility

Branching Decisions

A(st) = {1, 3,4} \)

at=4

St+1

MDP Formulation

State Actions Reward
Current B&B Tree and node of Which fractional variable to branch Number of nodes explored during

interest on solve process

St
s N
z7 <0 z7 >1 _ .
.A(st) = {1,3,4} 1 per time step

1] < 2 T1 >3
- J

Transitions are deterministic (i.e. add nodes, follow branch + cut algo.)

State Representation

They represent the current LP node of interest as a bipartite graph with side
information.

€1,1

€1,2

@éé

e13

623

State Representation

Tensor Feature Description

obj_cos_sim Cosine similarity with objective.

C bias Bias value, normalized with constraint coefficients.
is_tight Tightness indicator in LP solution.
dualsol_val Dual solution value, normalized.
age LP age, normalized with total number of LPs.

E coef Constraint coefficient, normalized per constraint.
type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.
coef Objective coefficient, normalized.
has_Ib Lower bound indicator.
has_ub Upper bound indicator.

v sol_is_at_Ib Solution value equals lower bound.
sol_is_at_ub Solution value equals upper bound.
sol_frac Solution value fractionality.
basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

reduced_cost

Reduced cost, normalized.

age LP age, normalized.
sol_val Solution value.
inc_val Value in incumbent.

avg_inc_val

Average value in incumbents.

Our Approach

GCNN for Parametric Policy

initial C-side V-side emg:;‘(lﬁn
embedding convolution convolution &
+ softmax

\Y% > V1 3 V22— m(x)

(4,5)€E (¢,5)€€
cié—fc(ci, > e (ci’vj:ei,j))’ VijV(Vj, > &y (Ci,Vj,ei,j))
J i

Warm Start: Imitation Learning

N

Generate expert (full strong branching) training samples D = {(Si, aj) =1

L) = -+ Y logmg(a®|s)

(s,a*)eD

Gasse et al. (2019): Exact Combinatorial Optimization with Graph Convolutional
Neural Networks. NeurlPs.

Training: Evolution Strategies

Implementation Details

Warm starting, a small learning rate, and a larger batch size for ES were the winning
combination.

25

100

20
80

15
60

Nodes
Nodes

10

- o
Batch Size 50 + Batch Size 5 + Batch Size 50 +

Random Warm Start LR 1e-4 LR 1e-4 LR 0.01
Model ES Hyperparameters

40

(6]

20

Empirical Performance

Our RL approach (GCNN + ES) is able to modestly outperform the GCNN architecture
alone, with the caveat that the GCNN was trained on our limited computing power.

Table 1: Policy evaluation on test set cover instances

Algorithm Time Wins Nodes

Full Strong Branching 6.16 (11.1%) 0/100 11.44 (11.1%)
Pseudocost Branching 2.66 (15.2%) 23/100 20.27 (15.2%)
GCNN 2.07 (14.8%) 29/100 16.48 (16.6%)
GCNN + ES 2.04 (13.7%) 48/100 16.11 (14.7%)

