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Learning to Branch



Integer Programming

Most modern solvers are  built around the idea that we  can solve LPs fast (both 
theoretically and practically), so we solve IPs by solving a sequence of LPs 



Branch & Bound

Key Idea: Recursively partition feasible region until we  get integral solutions from 
linear  relaxation



Branching Decisions



MDP Formulation

State
Current B&B Tree and node of 

interest

Actions
Which fractional variable to branch 

on

Reward

Transitions are deterministic (i.e. add nodes, follow branch + cut algo.)

Reward
Number of nodes explored during 

solve process 

-1 per time step



State Representation

They represent the current LP node of interest as a bipartite graph with side 
information.



State Representation



Our Approach



GCNN for Parametric Policy



Warm Start: Imitation Learning

Generate expert (full strong branching) training samples

Gasse et al. (2019): Exact Combinatorial Optimization with Graph Convolutional 
Neural Networks. NeurIPs. 



Training: Evolution Strategies



Implementation Details

Warm starting, a small learning rate, and a larger batch size for ES were the winning 
combination.



Empirical Performance

Our RL approach (GCNN + ES) is able to modestly outperform the GCNN architecture 
alone, with the caveat that the GCNN was trained on our limited computing power.


