Reinforcement Learning for Integer Programming

ORIE 6590

May 17th, 2021

Connor Lawless & Logan Grout Cornell University

Learning to Branch

Integer Programming

Most modern solvers are built around the idea that we can solve LPs fast (both theoretically and practically), so we solve IPs by **solving a sequence of LPs**

Branch & Bound

Key Idea: Recursively partition feasible region until we get integral solutions from linear relaxation

Branching Decisions

MDP Formulation

Transitions are deterministic (i.e. add nodes, follow branch + cut algo.)

State Representation

They represent the current LP node of interest as a bipartite graph with side information.

State Representation

Tensor	Feature	Description				
	obj_cos_sim	Cosine similarity with objective.				
С	bias	Bias value, normalized with constraint coefficients.				
	is_tight	Tightness indicator in LP solution.				
	dualsol_val	Dual solution value, normalized.				
	age	LP age, normalized with total number of LPs.				
Е	coef	Constraint coefficient, normalized per constraint.				
	type	Type (binary, integer, impl. integer, continuous) as a one-hot encoding.				
V	coef	Objective coefficient, normalized.				
	has_lb	Lower bound indicator.				
	has_ub	Upper bound indicator.				
	sol_is_at_lb	Solution value equals lower bound.				
	sol_is_at_ub	Solution value equals upper bound.				
	sol_frac	Solution value fractionality.				
	basis_status	Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.				
	reduced_cost	Reduced cost, normalized.				
	age	LP age, normalized.				
	sol_val	Solution value.				
	inc_val	Value in incumbent.				
	avg_inc_val	Average value in incumbents.				

Our Approach

GCNN for Parametric Policy

$$\mathbf{c}_{i} \leftarrow \mathbf{f}_{\mathcal{C}}\Big(\mathbf{c}_{i}, \sum_{j}^{(i,j)\in\mathcal{E}} \mathbf{g}_{\mathcal{C}}\left(\mathbf{c}_{i}, \mathbf{v}_{j}, \mathbf{e}_{i,j}\right)\Big), \qquad \mathbf{v}_{j} \leftarrow \mathbf{f}_{\mathcal{V}}\Big(\mathbf{v}_{j}, \sum_{i}^{(i,j)\in\mathcal{E}} \mathbf{g}_{\mathcal{V}}\left(\mathbf{c}_{i}, \mathbf{v}_{j}, \mathbf{e}_{i,j}\right)\Big)$$

Warm Start: Imitation Learning

Generate expert (full strong branching) training samples $\mathcal{D} = \{(\mathbf{s}_i, \mathbf{a}_i^\star)\}_{i=1}^N$

$$\mathcal{L}(\theta) = -\frac{1}{N} \sum_{(\mathbf{s}, \mathbf{a}^*) \in \mathcal{D}} \log \pi_{\theta}(\mathbf{a}^* \,|\, \mathbf{s})$$

Gasse et al. (2019): Exact Combinatorial Optimization with Graph Convolutional Neural Networks. *NeurIPs*.

Training: Evolution Strategies

Implementation Details

Warm starting, a small learning rate, and a larger batch size for ES were the winning combination.

Empirical Performance

Our **RL approach (GCNN + ES) is able to** *modestly* **outperform the GCNN** architecture alone, with the caveat that the GCNN was trained on our *limited* computing power.

Table 1. Toney evaluation on test set cover instances	Table 1:		Policy ev	raluation	on	test	set	cover	instances
---	----------	--	-----------	-----------	----	-----------------------	----------------------	-------	-----------

Algorithm	Time	Wins	Nodes
Full Strong Branching	6.16~(11.1%)	0/100	11.44~(11.1%)
Pseudocost Branching	2.66~(15.2%)	23/100	20.27~(15.2%)
GCNN	2.07~(14.8%)	29/100	16.48~(16.6%)
GCNN + ES	2.04~(13.7%)	48/100	16.11~(14.7%)