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Learning to Branch




Integer Programming

max cx
subject to Axr < b
x > 0 integral

Most modern solvers are built around the idea that we can solve LPs fast (both
theoretically and practically), so we solve IPs by solving a sequence of LPs



Branch & Bound

Key Idea: Recursively partition feasible region until we get integral solutions from
linear relaxation
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Branching Decisions
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MDP Formulation

State Actions Reward
Current B&B Tree and node of Which fractional variable to branch Number of nodes explored during

interest on solve process
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Transitions are deterministic (i.e. add nodes, follow branch + cut algo.)



State Representation

They represent the current LP node of interest as a bipartite graph with side
information.
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State Representation

Tensor Feature Description

obj_cos_sim Cosine similarity with objective.

C bias Bias value, normalized with constraint coefficients.
is_tight Tightness indicator in LP solution.
dualsol_val Dual solution value, normalized.
age LP age, normalized with total number of LPs.

E coef Constraint coefficient, normalized per constraint.
type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.
coef Objective coefficient, normalized.
has_Ib Lower bound indicator.
has_ub Upper bound indicator.

v sol_is_at_Ib  Solution value equals lower bound.
sol_is_at_ub  Solution value equals upper bound.
sol_frac Solution value fractionality.
basis_status  Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

reduced_cost

Reduced cost, normalized.

age LP age, normalized.
sol_val Solution value.
inc_val Value in incumbent.

avg_inc_val

Average value in incumbents.




Our Approach




GCNN for Parametric Policy
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Warm Start: Imitation Learning

N

Generate expert (full strong branching) training samples D = {(Si, aj) =1

L) = -+ Y logmg(a®|s)

(s,a*)eD

Gasse et al. (2019): Exact Combinatorial Optimization with Graph Convolutional
Neural Networks. NeurlPs.



Training: Evolution Strategies



Implementation Details

Warm starting, a small learning rate, and a larger batch size for ES were the winning
combination.
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Empirical Performance

Our RL approach (GCNN + ES) is able to modestly outperform the GCNN architecture
alone, with the caveat that the GCNN was trained on our limited computing power.

Table 1: Policy evaluation on test set cover instances

Algorithm Time Wins Nodes

Full Strong Branching 6.16 (11.1%)  0/100 11.44 (11.1%)
Pseudocost Branching 2.66 (15.2%) 23/100  20.27 (15.2%)
GCNN 2.07 (14.8%)  29/100  16.48 (16.6%)
GCNN + ES 2.04 (13.7%) 48/100 16.11 (14.7%)




