
Reinforcement
Learning for
Integer
Programming
ORIE 6590

May 17th, 2021

Connor Lawless & Logan Grout
Cornell University

Learning to Branch

Integer Programming

Most modern solvers are built around the idea that we can solve LPs fast (both
theoretically and practically), so we solve IPs by solving a sequence of LPs

Branch & Bound

Key Idea: Recursively partition feasible region until we get integral solutions from
linear relaxation

Branching Decisions

MDP Formulation

State
Current B&B Tree and node of

interest

Actions
Which fractional variable to branch

on

Reward

Transitions are deterministic (i.e. add nodes, follow branch + cut algo.)

Reward
Number of nodes explored during

solve process

-1 per time step

State Representation

They represent the current LP node of interest as a bipartite graph with side
information.

State Representation

Our Approach

GCNN for Parametric Policy

Warm Start: Imitation Learning

Generate expert (full strong branching) training samples

Gasse et al. (2019): Exact Combinatorial Optimization with Graph Convolutional
Neural Networks. NeurIPs.

Training: Evolution Strategies

Implementation Details

Warm starting, a small learning rate, and a larger batch size for ES were the winning
combination.

Empirical Performance

Our RL approach (GCNN + ES) is able to modestly outperform the GCNN architecture
alone, with the caveat that the GCNN was trained on our limited computing power.

