
Reinforcement Learning for Integer Programming
Variable Selection

Logan Grout Connor Lawless
School of Operations Research and Information Engineering

Cornell University

May 17, 2021

Abstract

Integer programming is a popular tool used to model a wide range of combinatorial
optimization problems. Modern integer programming solvers, such as CPLEX and
Gurobi, are built around a simple enumeration algorithm called branch and bound.
Within the branch and bound algorithm, there are a number of heuristics that guide
how the algorithm constructs and traverses a search tree. In this project, we focus
on one such heuristic - selecting which decision variable to branch on in a branch
and bound tree. We formulate the branching variable selection problem as a Markov
Decision Process, and learn a branching policy via reinforcement learning. We leverage
a deep graph convolutional architecture to parameterize a branching policy, and learn
the policy through the use of evolutionary strategies. Our algorithm is able to out-
perform benchmark branch selection algorithms in terms of overall computation time on
randomly generated set covering problems. A python implementation of our approach
can be found here. 1

1 Introduction

Integer programming (IP) is a popular tool to model a range of combinatorial optimization
problems such as scheduling, vehicle routing, and production planning. However despite it’s
popularity, IP remains a computationally challenging problem both in theory, due to the NP
hard nature of the problem, and in practice. Modern IP solvers are built around a popular
algorithm called branch and bound, which solves a sequence of linear relaxations of the IP
formulation by recursively partitioning the feasible region into a search tree. Within the
branch and bound framework, a number of heuristics are used to solve sequential decision
making problems such as node selection (i.e. choosing which node in the search tree to
evaluate), and variable selection (i.e. choosing which variable to partition the feasible region
on). Currently, solvers use a set of hard-coded heuristics to solve these problems, and
carefully tune parameters in the heuristics based on a representative sample of IP problems.

1https://github.coecis.cornell.edu/cal379/Learning-To-Branch-via-Evolutionary-Strategies

1

https://github.coecis.cornell.edu/cal379/Learning-To-Branch-via-Evolutionary-Strategies


However in many domains, similar types of IP problems are solved repeatedly (i.e. day to
day production planning, vehicle routing), which might differ greatly from the sample of
IP problems used to tune the heuristics. Reinforcement learning (RL) presents a promising
approach to learn heuristics for these sequential decision making tasks that are specialized for
a specific class of problems. In this project, we investigate the use of RL to find specialized
variable selection heuristics.

1.1 Outline of report

This report begins by outlining the fundamentals of branch and bound algorithms for linear
programming, and discuss our formulation of the problem as an MDP in section 2. In section
3 we discuss our deep learning approach to the problem, including the graph convolutional
neural network architecture [2] and the evolutionary strategy training procedure. Finally we
include an empirical analysis of our approach in section 4.

2 Problem Formulation

2.1 Integer Programming: Branch and Bound

A mixed-integer linear program is an optimization problem of the following form:

argmin
x
{cTx : Ax ≤ b, x ∈ Zp × Rn−p} (1)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and p ≤ n represents the number of integer variables.
The linear relaxation of problem 1 is obtained by removing the integrality requirement on
the p variables to obtain a continuous linear program (LP). During the branch and bound
algorithm [1] the LP relaxation of the IP is solved. If the resulting solution is integral (i.e. all
the variables originally constrained to be integral are integral), then the solution is optimal
for the original problem. Otherwise we split the feasible region of the LP relaxation according
to one variable xi that does not respect integrality in the current LP solution x∗:

xi ≤ bx∗i c, xi ≥ dx∗i e,∃i ≤ p : x∗i /∈ Z

Each sub-problem is then solved, and the binary decomposition procedure is repeated giving
rise to a search tree. All non-integral solutions provide a lower bound on the objective of the
IP, and all integral solutions provide an upper bound. The procedure is completed when the
upper and lower bounds are equal or none of the sub-problems can be decomposed further.
An important step in this branch and bound procedure is selecting which fractional variable
to branch on, as the choice of variable can have a large impact on the total number of nodes
needed to solve the problem.

2.2 MDP Formulation

We formulate the branch selection problem as an MDP as follows. The environment is the
IP solver (i.e. SCIP, Gurobi) and the brancher (i.e. the algorithm choosing which variable

2



Figure 1: Sample MDP stage of a branching problem. The node in red represents the
current node of focus. [2]

to branch on) is the agent. At the t-th time step, the current state is the branch and bound
tree with all past branching decisions, the best integer solution so far, the LP solution of each
node, the current focused node (i.e. which LP relaxation we want to perform a branching
operation at), and other solver statistics. The brancher then selects an action at ∈ {1, ..., p}
which represents which fractional variable to branch on according to a policy π(at|st). The
solver then performs the branching operation - computing the two new LP relaxations, doing
any pruning and processing as needed, and finally selecting the next node to focus on (this
is called the node selection problem and is out of the scope of this MDP formulation). An
episode is completed when there are no leaf nodes left to branch on, or the problem has
been solved. Note that since our goal is solve the problem with as few nodes as possible,
our reward is −1 for each time step with a discount factor of γ = 1. This process is
illustrated in Figure 1. Note that the transition probabilities are deterministic for a given
integer programming problem instance and solver.

Following [2], we encode the state st of a branch and bound process to be a bipartite
graph with both node and edge features (G, C, E, V ) as shown in Figure 2. On one side of
the bipartite graph we have nodes corresponding to constraints in the IP with C ∈ Rm×c

being the feature matrix for the constraints. On the other side of the graph we have nodes
corresponding to variables in the IP, and their associated feature matrix V ∈ Rn×d. Finally,
we have an edge in the bipartite graph if the variable is involved in the constraint (i.e.
Ai,j 6= 0 for constraint i and variable j). The edges also have an associated feature tensor
E ∈ Rm×n×e. The features used for each element of the graph are listed in Figure 3.

One of the biggest challenges to working with IP solvers is that popular solvers like
CPLEX and Gurobi are proprietary and don’t make their internals available for changes.
Luckily, Ecole, a new package built on top of an open-source solve SCIP, makes branching
decisions accessible in a gym-style environment [6]. The implementation also supports the
state representations described above.

The one remaining aspect to specify is the set of integer programming problems (each of
which will constitute an episode). While Gasse et al. [2] look at 4 different canonical sets
of integer programming problems, and generate random instances of each, we focus on the
set covering problem. We look specifically at small problem instances (1000 variables, 500

3



Figure 2: Bipartite Graph Representation of a problem with n = 3 variables and c = 2
constraints [2]

constriants) so we can run sufficient experiments to train our algorithm.

2.3 Benchmark Policies

There are two general approaches to the branching problem in the existing literature: 1)
heuristics from the integer programming community, and 2) imitation learning approaches to
replicating slow but effective heuristics. In the former, there are two popular approaches: full
strong branching, and pseudocost branching. Full strong branching (FSB) [1] is a heuristic
that works by computing the bound improvement by branching on every possible variable
and returning the variable with the largest bound improvement. While FSB has been shown
empirically to lead to smaller trees, it’s extremely slow to run (it requires solving two LPs
for every possible branching variable). A quicker heuristic is pseudocost branching, which
computes an estimate of the expected bound improvement for each variable (see [1] for
details). Pseudocost branching is a quicker heuristic than FSB, but empirically leads to
much worse performance in terms of nodes searched.

In recent years, researchers have begun leveraging supervised machine learning as a
heuristic to select variables to branch on [4, 2, 3]. In all of the existing approaches, re-
searchers attempt to learn the decisions of full strong branching [1] - aiming to replicate it’s
performance at a fraction of the computation time. The current state of the art approach is
the use of a graph convolutional architecture (GCNN) trained via imitation learning using
samples collected from running full strong branching [2].

3 Deep Reinforcement Learning Approach

One of the fundamental shortcomings of existing approaches to the branching problem is
that they simply aim to replicate full strong branching. However, there’s no theoretical or
practical guarantee that full strong branching is the optimal branching policy. Our aim

4



Figure 3: List of features for each component of bipartite graph [2]

is to show that using reinforcement learning to design a policy can outperform heuristics
trying to replicate full strong branching, both in terms of computation speed and branch
and bound tree size. We extend the approach of Gasse et al. [2] and use a GCNN to
parametrize a branching policy. However, rather than use imitation learning we train the
network using reinforcement learning. We leverage evolutionary strategies [7] a blackbox
optimization tool that’s seen recent empirical success for reinforcement learning problems in
integer programming [8].

The remainder of this section is organized as follows. Section 3.1 outlines the GCNN
architecture for policy parameterization, and section 3.2 outlines the evolutionary strategies
algorithm. Finally, we discuss some implementation details that help reduce the computation
time to learn an effective policy in section 3.3

3.1 Policy Network Architecture

Our policy, πθ(a|s) is a graph convolutional neural network, identical to the one used in
[2]. Let θ represent the parameters of the GCNN. The input is the state, encoded as a
bipartite graph with features on the nodes and edges as described above. The output is an
n-dimensional vector, where n is the number of variablesin the IP, such that the i-th entry
is πθ(xi|s). See Figure 4 for a visual overview of our architecture.

5



Figure 4: Overview of the graph convolutional neural network architecture for a bipartite
graph [2]

The GCNN works in two passes as follows. In the first pass, we consider each constraint.
For every edge incident to that constraint in the bipartite representation, that is for each
variable that participates in that constraint, the features of the edge, variable, and constraint
are combined via a 2-layer perceptron with a ReLU activation function, gC and summed
together. Then this, and the feature vector of the constraint being considered are run
through another 2-layer perceptron with a ReLU activation function, fC. The output of this
becomes then new feature vector for this constraint. The second pass does the same for each
variable, except with two different 2-layer perceptrons with ReLU activation functions, gV
and fV . Mathematically, these two passes take the form:

ci ← fC

ci,

(i,j)∈E∑
j

gC(ci,vj, ei,j)

, vj ← fV

vj,

(i,j)∈E∑
i

gV(ci,vj, ei,j)


A convenient property of this architecture, is that it is agnostic the exact number of

constraints and variables included in the formulation. This allows the same policy network
to be used on integer programming problems of different sizes, a necessary property for a
policy that aims to generalize to large instances. While this policy architecture will output
a probability for all decision variables, for inference we only select valid actions (i.e. decision
variables that aren’t fixed) to help filter infeasible actions. A future direction could involve
removing fixed variables from the bipartite graph representation, ensuring that the network
only outputs feasible actions without additional intervention.

3.2 Training: Evolutionary Strategies

It has been noted that while the decisions made in the branch and bound algorithm can
be formulated as an MDP, trying to find optimal policies for these MDPs using traditional
RL algorithms runs into issues [2]. Rather than train a policy for node selection using
a standard MDP-based RL algorithm, we trained our policy using an Evolution Strategy

6



(ES) algorithm. These algorithms have been studied recently to train neural networks, and
specifically as an alternative to traditional RL algorithms [7]. This strategy, of using ES to
train a policy for a RL model has already been applied to another problem in IP solving:
the selection of cutting planes [8].

The main idea of ES is quite simple. Rather than improve your policy parameter by
moving in the direction of the gradient, compute a function that approximates the gradient,
and move in that direction. To estimate the gradient, we produce a small perturbation vector
ε ∼ N(0,1). We then define θ′ = θ + σε for some fixed constant σ > 0. To generate an
estimate of the policy’s return, denoted J(θ′), we run the policy on M instances and average
the results. Our gradient estimate ĝ is thus:

ĝθ =
1

N

N∑
i=1

J
(
πθ′i
)εi
σ

where N is the batch size (i.e. number of noisy parameter evaluations). We use ADAM [5]
to then perform gradient ascent using our gradient estimate.

ES has some attractive qualities that make it well suited for use in this setting. For
one, it has lower variance than traditional policy gradient methods for settings with large
episode lengths, and where individual actions can have long-term effects [7]. The execution
of one instance of an integer program can require a large number of time steps/nodes (i.e.
large instances of the set cover problem require 50K + nodes with a state of the art solver).
Moreover, individual actions near the root of a branch and bound tree can have long-term
impacts on the overall size of the tree [1]. Finally, since our approach doesn’t require main-
taining a value estimate, like proximal policy optimization or other actor critic methods, it
allows us to warm-start or solution procedure (discussed in the following section) using the
imitation learning scheme from Gasse et al. [2].

3.3 Implementation Details

One of the challenges of doing reinforcement learning for branching variable selection from
scratch (i.e. randomized initial policy) is that it can take an onerous amount of time to find a
good policy. Poor performing policies lead to larger episode lengths (i.e. larger trees) which
can take orders of magnitude longer than baseline policies. To speed up our training process,
we warm-started our policy following the imitation learning methodology of Gasse et al. [2].
We start by generating expert demonstrations (i.e. states and the action selected by full
strong branching) from randomnly generated set cover instances. Since strong branching
leads to small search trees and thus would only generate training samples near the root
of the branch and bound tree, we generate samples by randomly alternating between the
expert policy and random branching to ensure we explore large potential states. However,
we only retain samples using the expert policy for pre-training. We then train a GCNN
using supervised learning with the following imitation learning loss function:

L(θ) = − 1

N

∑
(s,a∗)∈D

log πθ(a
∗ | s)

7



Random Warm Start
Model

0

20

40

60

80

100
N

od
es

Batch Size 50 +
 LR 1e-4

Batch Size 5 +
 LR 1e-4

Batch Size 50 +
 LR 0.01

ES Hyperparameters

0

5

10

15

20

25

N
od

es
Figure 5: (Left) Effect of Warm Starting on Policy Performance. (Right) Ablation test on
the impact of ES hyper-parameters. Nodes indicates the 1-shifted geometric average number
of nodes (lower is better) to solve 100 random instances of the set-cover problem.

In their original paper, Gasse et al. collect 100,000 training samples and train their GCNN
for 100 epochs over the training data. Due to limited computational resources, we generated
10,000 samples and trained our model for 10 epochs. This was enough to dramatically
improve the baseline quality of our branching policy. Figure 5 shows the average number
of nodes (lower is better) used to solve a random set cover instance before and after warm-
starting the GCNN.

Our implementation of evolutionary strategies was based off Tang et al.’s learning to cut
implementation [8] which involved using a batch size of 5 (i.e. independent noisy performance
estimates), and a learning rate of 0.01. Instead of using random instances to train their
algorithm, they used a smaller training dataset of 20 instances for their sample problem.
However, we found that their approach didn’t scale to our larger GCNN architecture. We
increased the batch size to 50, and dramatically reduced the learning rate (LR) to 0.0001.
Figure 4 shows a small ablation test for the impact of these changes. We can see that without
both tweaks, ES leads to policies that perform worse than the baseline pre-trained GCNN.
To help reduce noise in the gradient estimate for ES, we also ensure that all batches use the
same randomly generated test instances, as opposed to independently sampling instances for
each. This helped reduce the noise from the difficulty of the test instances in determining
ascent directions.

4 Empirical Results

To test the performance of our model trained using reinforcement learning, we follow the
procedure from [2] and evaluate the branching policy on 20 new instances of the set cover
problem. We run each instance with five different random seeds to capture variance that
comes from random tie breaking within the branch and bound algorithm beyond branching.

8



All of the experiments were run on a laptop computer with a 2.7 GHz Quad-Core Intel Core
i7 processor and no GPU. Our reinforcement learning approach (denoted GCNN + ES) was
run overnight, which translated to roughly 50 iterations of the ES algorithm. We note that
the algorithm had not converged at termination, and could likely have benefited from a
longer training period or computing infrastructure better suited for deep learning.

We report the 1-shifted geometric mean for both the number of nodes explored to solve
the branch and bound tree and the total computation time. We look at the geometric mean,
as opposed to the arithmetic mean, as both the solve time and number of nodes have a
left-skew (many instances are solved in pre-solve) and thus the geometric mean provides a
performance measure that’s less sensitive to large outliers but still includes their effects. Since
each instance-by-instance performance has high variance, we report the average variance
of performance across the same instance over multiple random seeds. For example, 11.44
(11.1%) for number of nodes indicates that on average the algorithm solves an instance of the
set cover problem in 11.44 nodes, and that when solving one instance the number of nodes
used varies on average by 11.1 percent. We also report the number of wins across the 100
instances, defined as the number of instances where each algorithm solved the instance in
the smallest amount of time. Table 1 summarizes our empirical trials for small set covering
instances.

Table 1: Policy evaluation on test set cover instances

Algorithm Time Wins Nodes

Full Strong Branching 6.16 (11.1%) 0/100 11.44 (11.1%)
Pseudocost Branching 2.66 (15.2%) 23/100 20.27 (15.2%)
GCNN 2.07 (14.8%) 29/100 16.48 (16.6%)
GCNN + ES 2.04 (13.7%) 48/100 16.11 (14.7%)

Overall, we can see that the model trained with reinforcement learning does marginally
better than the pre-trained GCNN alone (though the results are stll within the margin of
error). It won roughly 50% of the instances. It’s important to note, that the GCNN was only
trained using our warm star procedure, and not the 100,000 samples used in the original Gasse
et al. paper due to computational limitations. While these results don’t provide evidence
that our model outperforms the state of the art, it does provide some evidence that training
a model with evolutionary strategies can improve on a pre-trained baseline.

5 Conclusion

In this project, we demonstrated the potential of reinforcement learning to improve branch-
ing variable selection in integer programming. Our ES algorithm was able to improve upon
a GCNN trained on expert demonstrations from Full Strong Branching. While this im-
provement provides a promising signal of the power of RL in this context, computational
limitations impeded a fair comparison to the state of the art. For one, we were unable to
train the GCNN to the extent of Gasse et al. [2], using only a tenth of the expert demon-
strations. Our training processss was also terminated pre-maturely, prior to convergence

9



of an optimal policy. Finally, we were only able to evaluate our policy on small instances
of the set covering problem. While we initially planned on running experiments with large
instances (∼ 2000 rows), doing so would have required nearly a week of computation time
on our computing infrastructure as each instance can take up to an hour to solve. Thus it
remains to be seen, whether ES can improve upon a fully trained GCNN branching policy,
and whether such a policy generalizes well to large settings. These caveats aside, we believe
this approach provides a promising step towards the integration of reinforcement learning
into heuristics employed during integer programming branch and bound algorithms.

References

[1] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli. Integer programming.
Springer, 2014.

[2] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks, 2019.

[3] Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, and
Yoshua Bengio. Hybrid models for learning to branch, 2020.

[4] Elias B. Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learn-
ing to branch in mixed integer programming. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence, 2016.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[6] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat,
and Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial opti-
mization solvers, 2020.

[7] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning, 2017.

[8] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer
programming: Learning to cut. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 9367–9376. PMLR, 13–18 Jul 2020.

10


	Introduction
	Outline of report

	Problem Formulation
	Integer Programming: Branch and Bound
	MDP Formulation
	Benchmark Policies

	Deep Reinforcement Learning Approach
	Policy Network Architecture
	Training: Evolutionary Strategies
	Implementation Details

	Empirical Results
	Conclusion

