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Inventory Control

e Positive lead times: after an order for more inventory is placed, there's a
delay before it is received
o Delay = L time steps
e Lost sales: demand that is not fulfilled disappears from the system and
cannot be met at a later date
o p=penalty (per unit) of lost sales

Additionally, inventory has a holding cost: penalty of h=1 per unit of inventory on
hand at the end of time t

Source: [2]



State/Action Space

|, = inventory on hand

X, = (X; X o) = ‘Pipeline’ vector of orders that will arrive in the future

f."(l, x,) = action (order placed at time t, depending on policy m)

State space: |, x, must be non-negative

Action space: order placed must be non-negative

Source: [2]



MDP

. Update inventory on hand: [; = [; + xq;

. Simulate demand: D; ~ Exp()\)
3. Determine post-demand inventory: /;,, = max(0, I.— D)
. Incur costs: CF = h(l,— D)t +p(l;—D,)~ = hxmax(0, I, — D;)+pxmax(0, —(I,— D))

. Update pipeline vector: let x4 = [ (x4, 1) and 2441 = xjp14 fori=1,..., L — 1.

”
Goal: minimize long run average cost NeIEIESBRITI ji ZE[(,H
t=1

T—00

Source: [2]



Simple Policy

Constant-order policy: the same amount of inventory is always ordered

e characterized by a single parameter r

Xin & Goldberg (2016): best constant-order policy becomes asymptotically
optimal as lead time grows

Source: [2]



Optimality Bounds for Constant-Order Policy

Table A.l. When h =1, values of (9) under different p and L.

Evaluation of (9) L=1 L=4 L=10 L=20 : L=70 L =100

p=1/4 2.13 1.08 1.00 1.00 1.00 1.00
p=1 3.36 1.89 1.15 1.01 1.00 1.00
p=4 6.42 3.99 2.62 1.72 1.02 1.00
p=9 12.26 6.77 443 3.12 45 1.38 1.15
p=239 62.26 27.60 14.86 9.62 X 4.75 3.81
p=99 204.50 85.21 41.77 2443 10.49 8.49

Figure 6: Table A.1. from Xin & Goldberg (2016). The entries correspond to the upper

bound on C(x,_)/OPT(L)




PPO and Parameterization

e Used PPO from Stable Baselines3

e Feature extractor
o Output is fed as input into policy and value models
o 2 layers with 64 units each
o Used default randomized initialization
e Policy
o Linear model -> add Gaussian noise -> pass through squashing function
o Initialized weights to be 0 and bias to be optimal constant order amount
o Decreased initial standard deviation of noise from default of 1 to 1/e
e Value
o Linear model
o Used default randomized initialization

Source: [1]



Training/Evaluation Process

e Used rollouts of length 2048 during training on a single episode until 500000
time steps had been simulated

e Evaluated and saved current policy every ~25000 simulated time steps on 8
episodes of length 20000

e Repeated this process again for all problems

e Chose the policy with the lowest evaluation cost

e Did a final evaluation on 50 episodes of length 20000 to generate our table



Our Results

L = 58 = 70
.906137 .909529
.814216 .976300
.997304 .992948
.990411 .968652
.942677 .955548
.992178 .927584

100
.910072
.904669
.992391
.944635
.909879
.936422

L = 20 = 30
.957875 .967347
.999953 .001167
.970293 .993897
.950493 .966457
.064118 .870776
.271550 .1390631

L=1 L=4 = 10
.000732 .998664 979373
.012899 .995453 .996600
.110758 .026892 .003398
.258596 .079733 .027929
.777229 .407220 .205311
.392048 .823024 .471593

=4 = 10 = 20
[0.977414, ©.981339] [©.955984, ©.959774]
[0.994277, ©.998935] [8.998063, 1.00185]
[1.000466, 1.006346] [©.967001, ©.973607]
[1.024301, 1.031582] [0.9471, ©.95391]
[1.770301, 1.784212] [1.399918, 1.4146] [1.198947, 1.211743] [1.©58125, 1.070178]
[2.377531, 2.406744] [1.812189, 1.833989] [1.460911, 1.482432] [1.260767, 1.282518]
L = 30 L = 50 L =70 = 100

[0.965783, ©.968915] [0©.904305, 0.907976] [0.908077, ©.910986] [0.908201, ©.91195]
[0.998846, 1.0035] [0.812317, ©.816123] [0.974239, 0.978369] [0©.902875, ©.906471]
[0.990942, ©.99687] [0.993298, 1.001342] [0©.989848, ©.996067] [0.989381, ©.99542]

L=1 L
[0.998942, 1.002529] [08.996974, 1.00036]
[1.010599, 1.015289] [©.993505, ©.997409]
[1.107267, 1.11427] [1.024105, 1.029694]
[1.254425, 1.262794] [1.076347, 1.083141]

39
99

[0.962164, 8.970789]
[0.77531, ©.993054]
[1.13209, 1.146057]

[0.986214, ©.994643]
[0.920627, 8.96581]
[0.981016, 1.003597]

[0.964314, ©.97303]
[0.947945, 8.963273]
[0.915789, ©.939686]

[0.916613, 8.974425]
[0.897742, ©.922348]
[0.926192, ©.94688]




L=4 = 10 = 20 L = 30 L = 50 = 79 100

1/4 1.000732 .998664 979373 :0.957875 .967347 .906137 .909529 .910072
1.012899 .995453 .996600 ©.999953 .001167 .814216 .976300 .904669
1.110758 .026892 .003398 ©.970293 .993897 .997304 .992948 .992391
1.258596 .079733 .027929 ©.950493 .966457 .990411 .968652 .944635

1. 777229 .407220 .205311 1.064118 870776 .942677 .955548 .909879

2.392048 .823024 .471593 |1.271559 1.139031' -992178 .927584 .936422

Other Group

C(const_order)/C(PPO) L=4 L=10 L=20 L=30 L=50 L=70 L=100
p=0.25 1.00368 1.00124 0.99923 0.98822 0.90195 0.88395 0.83419 0.85435
p=1 1.00970 1.00112 1.00050 0.99501 0.82632 0.83170 0.79193 0.77658
p=4 1.09048 1.04100 1.00175 0.97143 0.81546 0.81599 0.77624 0.79345
p=9 1.23925 1.13170 1.06793 1.00547 0.82239 0.79777 0.77362 0.77989
p=39 1.83981 1.46979 1.22424 1.17589 0.84864 0.78660 0.77462 0.76134
p=99 2.48444 2.30920 145911 | 1.13117 0.91039 0.81862 0.75929 0.78665




Improving when L is Large (p=99, L=70)

e Decreased initial standard deviation of policy to 1/e*2

Decreased Adam learning rate from .0003 to .0002

e Increased rollout length to ~49000 during training and total time steps to
2000000

e Evaluated every ~50000 time steps using 20 episodes

e Achieved ratio of 1.0639 with 95% confidence interval [1.0543, 1.0736]

Trained Policy Performance vs Training Steps Completed (L = 70, p = 99)

Trained Policy Performance vs Training Steps Completed (L = 70, p = 99)
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Trained Policy Actions (L=1,p = 1)
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