
Inventory Control with Lost Sales and Lead Times

Matthew Ford & Anna Poulton

May 16 2021

1 Introduction
Optimal inventory management is a major concern for many business. Here, we consider
an inventory management problem that exhibits two key traits: positive lead times and lost
sales. In a system with positive lead times, after an order for more inventory is placed, there
is a delay before it is received [4]. This is a reasonable assumption because, in many real
life situations, it takes a non-negligible amount of time for inventory that is ordered to be
produced and shipped to a business. On the other hand, lost sales means that if there is more
demand than there is inventory on hand, then any demand that is not fulfilled disappears and
cannot be met at a later date [4]. In real life, this may occur when competing business(es)
exist, as customers with unmet demand may simply take their business elsewhere [4]. This
is in contrast to other inventory models with backlogged demand, in which case demand that
cannot be immediately met can be fulfilled in the future [4].

There are a variety of policies that have been examined in the context of these inventory
models. Two examples of simple policies include the constant-order policy and the base-
stock policy. For a constant-order policy, the same amount of inventory is always ordered
(regardless of the amount of inventory on hand, the amount of inventory that has been
ordered but has not yet arrived, etc.) [4]. This type of policy can be characterized by a
single parameter r, representing the size of the constant-order. On the other hand, for a
base-stock policy, an order is only placed when the inventory falls below a certain value; the
size of the order is chosen to bring the inventory back up to a specific level [2].

The analysis of different types of models faces different challenges. For instance, especially
when lead times are long, models with positive lead times and lost sales are generally not
possible to solve with dynamic programming [4]. A precise form for the optimal policy
has not yet been found for this type of model, although its properties are starting to be
better understood [4]. On the other hand, it has been proven that for models with positive
lead times and backlogged demand, a base-stock policy is optimal [4]. Because of their
tractability, in the past these models have been used as approximations for models with lost
sales; however, the resulting optimal base-stock policy can sometimes show very suboptimal
performance when applied to the corresponding lost sales model [4].

Much work has gone into understanding the properties of the optimal policy for the
lost sales model with positive lead times. A key result is that the best constant-order
policy becomes asymptotically optimal for this model as the lead time grows [4]. However,
even under short lead times, previous numerical results have shown decent performance
for the constant-order policy [4]. Xin & Goldberg (2016) provide improved bounds for
the performance of the constant-order policy, showing that as the lead time increases, the

1



optimality gap of the performance of the optimal policy and the best constant-order policy
converges to zero exponentially fast. The results of Xin & Goldberg’s work will be discussed
more thoroughly in section 2.2.

Our ultimate goal will be to, in a wide parameter space, train policies that achieve better
performance than the best constant-order policy. In section two, we define the model for
our inventory management problem, as described in Xin & Goldberg (2016). Following
this, we verify the model’s implementation in an OpenAI Gym environment by testing its
performance under various simple policies. We then discuss our deep reinforcement learning
(RL) training methodology, which uses the Stable Baselines3 package. In section 3, the
results of our training process are presented, with a discussion of where our training procedure
produced good results and where improvements could still be made. For a few simple cases,
we will also present visual representations of our optimal policy and discuss their general
characteristics. Finally, we discuss a modified training procedure to address a specific region
of parameter space.

2 Methods

2.1 MDP

Here, we define the Markov decision process (MDP), as described by Xin & Goldberg (2016),
to represent the lost sales inventory model with positive lead times. Let L ∈ N be the lead
time (representing the number of time steps for an order that was placed to be delivered) [4].
The state of the system consists of two components: It, representing the current inventory
level, and xt = (x1,t, . . . , xL,t), a vector of inventory orders that will arrive in the future (often
referred to as a ‘pipeline’ vector) [4]. We only require that these quantities be non-negative,
and thus, the state space is S = {(It,xt) : It, x1,t, . . . , xL,t ≥ 0} [4]. For initial conditions, as
in Xin & Goldberg (2016), we assume I1 = 0 and xi,1 = 0 for i = 1, . . . , L.

Following the terminology of Xin & Goldberg (2016), we let fπt (xt, It) denote the order
placed at time t, which is determined by the policy π. Since any non-negative order is a
valid possible action, our action space is A = [0,∞) [4]. Demand in our system is modeled
as exponentially distributed with λ = 1, as this simple form allowed Xin & Goldberg (2016)
to exactly solve for the best constant-order policy and its performance. At the end of each
time period, a penalty h > 0 is incurred per unit of leftover inventory, and a penalty p > 0
is incurred per lost unit of sales [4]. Bringing these pieces together, the MDP described by
Xin & Goldberg (2016) proceeds as follows for each time step t:

1. Update inventory on hand: Ĩt = It + x1,t

2. Simulate demand: Dt ∼ Exp(λ) with λ = 1

3. Determine post-demand inventory: It+1 = max(0, Ĩt −Dt)

4. Incur costs: Cπ
t = h(Ĩt−Dt)

++p(Ĩt−Dt)
− = h∗max(0, Ĩt−Dt)+p∗max(0,−(Ĩt−Dt))

5. Update pipeline vector: xL,t+1 = fπt (xt, It) and xi,t+1 = xi+1,t for i = 1, . . . , L− 1.

2



2.2 Long-run Average Cost

The performance of a policy π is determined by its long-run average cost C(π), which we
wish to minimize [4]. In Xin & Goldberg (2016), the long-run average cost of a policy π is
calculated exactly as C(π) = lim supT→∞

1
T

∑T
t=1 E[Cπ

t ]. However, since we are carrying out
simulations, we need to be able to approximate the long-run average cost. Let Cπ

t,j be the
cost incurred at time t in the j-th episode of simulating policy π, and let the time horizon
(T ∗) and number of episodes (J) be large. Then, we estimate the long-run average cost as

C(π) ≈ 1

T ∗

T ∗∑
t=1

[
1

J

J∑
j=1

Cπ
t,j

]
=

1

J

J∑
j=1

[
1

T ∗

T ∗∑
t=1

Cπ
t,j

]

The truncation of the limit results in a biased estimate, which depends on the initial
state [3]. However, given a large enough T ∗, this bias should be sufficiently small for our
purposes. We demonstrate this with an example in section 2.3, in which we show that our
estimate for the long-run average cost (taken over J = 100 episodes) converges quickly to
the true long-run average cost as the time horizon T ∗ increases.

It should be noted that this approximation only works if C(π) is finite. For instance,
with λ = 1, the expected demand per time step is E(Dt) = 1. If the chosen policy π placed
an order of r = 10 every time period, the amount of inventory on hand would tend to pile
up over time, causing E[Cπ

t ] to increase without limit as t → ∞ and C(π) to be infinite.
(In Xin & Goldberg (2016), the constant-order policy is restricted to r ∈ [0,E(D)), since
larger r would result in C(πr) being infinite.) If C(π) is infinite, the approximation of C(π)
given above will tend to increase as the time horizon increases. We demonstrate this with
an example in section 2.3.

The work of Xin & Goldberg (2016) shows that the best constant-order policy makes an
order each time period of r∞, and incurs a long-run average cost of C(πr∞), where

r∞ =
1

λ

(
1−

√
h/(2p+ h)

)
, C(πr∞) =

1

λ

(√
h(2p+ h)− h

)
If Π is the set of all viable policies, then the long-run average cost of the truly optimal

policy is given by OPT (L) = infπ∈ΠC(π) [4]. While we do not know the truly optimal
policy, the results of Xin & Goldberg (2016) give optimality bounds for the best constant-
order policy, which are as follows.

C(πr∞)

OPT (L)
≤ 1 +

(
τp,h +

(
1

τp,h
− 1

)(
1

e(L+ 1)

))(
1

(1− γp,h) log(1 + p/h)

)
γL+1
p,h

where τp,h =
√
h/(2p+ h) and γp,h = (1 − τp,h) exp(τp,h) [4]. The optimality bounds are

given for several combinations of p and L in Table A.1 from Xin & Goldberg (2016). For
easy reference, a copy of this table can be found in the appendix. For small p (and especially
when L is large), the best constant-order policy is guaranteed to be close (or very close) to
optimal [4]. This case is less interesting to us, as training will not be able to improve much
over the best constant-order policy. On the other hand, when p is large (and especially when

3



L is small), the optimality bounds can be quite large [4]. As such, this is the region that we
will focus our training efforts on.

It should be stated for clarity that the entries of Table A.1. represent the ‘worst case’
scenario for the best constant-order policy. Even if the bound is large, the performance of
the best constant-order policy could still be close to that of the optimal policy. Because
of this, we may or may not be able to obtain significant performance improvements in our
trained policy over the best constant-order policy: it all depends on the how close the actual
performance of the (unknown) optimality policy is to that of the best constant-order policy.

2.3 OpenAI Gym Environment Verification

First, we tested the implementation of the MDP in an OpenAI Gym environment by sim-
ulating the performance of two different constant-order policies. Let h = p = λ = L = 1.
Using the results from Xin & Goldberg (2016), the best constant-order policy for this set of
parameters is r∞ ≈ .423, and this policy has a long-run average cost of C(πr∞) ≈ .73205.
On the other hand, if we let r = 10, then (as noted previously) the true long-run average
cost will be infinite, and our estimate for the long-run average cost should increase as the
time horizon increases.

Figure 1: The mean (over 100 episodes) of the average cost for two different policies (left:
r∞ ≈ .423, right: r = 10) as the time horizon increases.

Figure 1 shows our estimate for the long-run average cost for each policy as the time
horizon increases. For the best constant-order policy r∞ ≈ .423 (left image), the estimate
of the long-run average cost quickly converged to approximately C(πr∞) ≈ .73205. (At the
end of the time horizon, the estimated performance was 0.73195 with a standard deviation
of 0.00297.) This example helps to demonstrate the validity of our method for estimating
the long-run average cost when C(π) is finite. On the other hand, for the r = 10 policy
(right image), the estimate of the long-run average cost did not converge as the time horizon
increased (which was expected, as this policy has an infinite long-run average cost).

2.4 Model Training with PPO

We used Stable Baseline3’s implementation of PPO to train our models [1]. We used the
default neural network parameterizations. The first network is a feature extractor network

4

jimdai
Highlight
more than one network? 



with 2 layers each consisting of 64 units. This network learns a useful transformation of the
state space to be used as shared input to our policy and value models. The policy network
consists of a linear model whose output is then transformed through a squashing function
to be non-negative to match our action space. During training we added Gaussian noise to
the output of the policy linear model but before the squashing transformation to obtain a
stochastic policy which PPO can learn with. We initialized the weights of the policy network
to be 0 and the bias to be r∞, the optimal constant-order amount for the problem. This
initialized the policy’s median action to approximately (approximation potentially coming
from squashing function, though the squashing function did not seem to alter the few cases
we manually examined) be the known best constant-order policy. We also set the standard
deviation of the noise added at the start of training to be e−1 as opposed to the default of
1. Given that the output of our initial policies network were on the order of 1, we did not
want to get too many outputs that were very small and would be squashed substantially. We
briefly tried using even lower standard deviations but found that they did not yield as good
of policies, likely suffering from lack of exploration. The value model was a simple linear
model and we did not change its random initialization in any way.

When training for a given problem, we simulated for 500000 total time steps, with model
updates happening every 2048 time steps. We meant to simulate multiple environments in
parallel during training, but due to a recently found typo in our code we realized we only
simulated 1 environment during the training for each problem. We evaluated the current
model after intervals of approximately 25000 time steps on 8 environments of episode length
20000. In the end, the policy we selected and retained was the one which had the lowest
average cost during this evaluation procedure. To generate our final results, the best trained
policy for each problem was evaluated on 50 episodes of length 20000. We carried out several
tests (on combinations of small vs large p and small vs large L) to ensure that this choice of
a time horizon for policy evaluation was sufficiently good for our purposes. Occasionally, the
mean costs of the policies would start increasing and then oscillating around wildly during
training producing poorly performing policies. Thus, we repeated this training procedure
twice for all the problems, and took the best of the two resulting trained policies. This
behavior may have been avoided had we actually simulated multiple environments in parallel
during training as we had intended to do for variance reduction.

There were many hyperparameters to tune. We manually experimented with the length
of the episodes, how long to train, the standard deviation of our initial policy, the learning
rate, and more. Our initial goal was to get good performance on the problems with low
values of L and high values of p, as this region had the most potential room for improvement
over the best constant-order policy [4]. Other than setting γ = 1 to tell PPO to solve the
average cost problem instead of a discounted one, we found the default parameters values
used by Stable Baseline3’s implementation of PPO (for learning rate, etc.) to work well.
While the episode length of 2048 is long enough to observe multiple regenerative cycles for
low to medium values of L, it is likely too short for when L is large (say, when L = 100).
Additionally, in the regions where the best constant-order policy is close to optimal, any
deviation from it is likely a decrease. In such cases, we would likely need longer episode
lengths and lower learning rates, clipping parameters, and starting standard deviations for
the initial policy to ensure that we do not regress in performance. These parameter settings

5

jimdai
Highlight
How many NN for representing a policy ? Do you mean one NN with multiple layers or parts?

jimdai
Highlight

jimdai
Highlight
better to define it

jimdai
Highlight
What is a model update?

jimdai
Highlight
current model: means the inventory model under current policy? 

jimdai
Highlight



would have made learning policies for the other problems highly sample inefficient, however.
While our initial methodology is focused on the small L and large p region, in section 3.3 we
experiment with such changes to improve the performance of our training procedure for the
case of large L and large p.

3 Results and Discussion

3.1 Training Results

We trained policies for a total of 48 problems, across which the lost sales penalty (p) and the
lead time (L) were varied. The inventory holding penalty (h) and the demand parameter
(λ) were both fixed at 1 in all problems. Figure 2 is a summary of our training results when
using the procedure described in section 2.4. This table entries are C(πr∞)/C(πPPO), the
ratio of the long-run average cost for the best constant-order policy and our best trained
policy. C(πPPO) was estimated over 50 episodes with time horizons of 20000, while C(πr∞)
was calculated using the theoretical results from Xin & Goldberg (2016) discussed in section
2.2. A number greater than 1 indicates that our trained policy performed better on average
than the best constant-order policy. 95% confidence intervals are available in Figure 7 in the
appendix.

Figure 2: Using the training methodology from section 2.4, C(πr∞)/C(πPPO) under different
values of L and p. (h = 1 and λ = 1 were fixed.)

Ultimately, we were able to obtain the best results in the case of small L and large p. In
such cases, the long-run average cost of our trained policy tended to quickly drop below the
long-run average cost of the best constant-order policy, and generally continued to improve
throughout the training process. Our best success came in the case of (p, L) = (99, 1), where
our trained policy had an estimated long-run average cost of approximately 5.5, versus the
best constant-order policy’s cost of approximately 13.1. The performance of this policy
throughout the training process is shown in the left image of Figure 3.

Our training methodology was not able to achieve as good of results in other regions
of parameter space; however, we did not expect to see performance gains in many of these
regions. For example, in the case of large L and small p, the best constant-order policy is
nearly optimal anyways [4], so we did not expect our trained policies to perform better.
Despite starting close to the best constant-order policy, the training process produced a
policy that performed somewhat worse, likely due to the hyperparameters being tuned for
the case of small L and large p.

For small L and small p, our trained policies performed similarly or slightly better than

6



the best constant-order policy. The training procedure was also less reliable, and the policy
would often experience periods of becoming gradually worse (demonstrated by the (p, L) =
(1, 1) case in the right image of Figure 3). Additional tuning of our training procedure could
have perhaps improved the performance of our policies here, but the optimality bounds
in this region only leave slight room for improvement [4]. Interestingly enough, while our
trained policy performed similarly to the best constant-order policy, the policies could look
very different from each other. An example of this will be discussed in section 3.2.

For large L and large p, our trained policies performed slightly worse than the best
constant-order policy. The training procedure would often exhibit large spikes of poor per-
formance. In some cases the best policy produced would even be right after the very first
evaluation at 25000 time steps (demonstrated by the (p, L) = (99, 70) case in the left image
of Figure 5). Because our current training procedure appeared to not work in this region, and
since the optimality bounds were somewhat large (notably when p = 99) [4], we decided that
additional tuning would be worthwhile to see if it might still be possible to improve upon the
best constant-order policy. In section 3.3, we discuss changes to our training methodology
to better address this region of parameter space.

Figure 3: Two runs of our training procedure showing great (left) and ok (right) performance.
The blue line indicates the performance of our trained policy (evaluated every 25000 time
steps), while the red dashed line shows the performance of the best constant-order policy.

3.2 Visualizations of Trained Policies

For the L = 1 case, we were able to produce simple visual representations of our trained
policies, three examples of which are given in Figure 4. Across a range of values for p, our
trained policies show some similarities. For instance, the order size generally decreases as
the amount of on hand inventory (It) and the amount of inventory in the pipeline (x1,t)
increases. Additionally, the order size tends to increase as p increases: this is intuitively
reasonable, as increasing p results in larger penalties if demand goes unfulfilled, meaning
that it should be desirable to order more inventory to avoid this risk. The trained policy
for the (p, L) = (1, 1) case is especially interesting. While this policy shows very similar
performance to the best constant-order policy (r∞ ≈ 0.423), it looks considerably different.
Much larger orders are placed near (It, x1,t) = (0, 0), while nothing is ordered when It + x1,t

is larger than approximately 1.5. In fact, our trained policy for this case shares many

7



similarities with a base-stock policy (not ordering anything when above a certain amount of
inventory, etc.).

Figure 4: Actions taken by three different trained policies on a subset of the state space. Note
that the color scale differs in each image. Top: (p, L) = (1, 1), where the best constant-order
policy is r∞ ≈ 0.423. Bottom left: (p, L) = (9, 1), where r∞ ≈ 0.771. Bottom right:
(p, L) = (99, 1), where r∞ ≈ 0.929.

3.3 Improving training performance for large L and large p

While our initial training procedure worked great for small L and large p, it did not perform
well for the case of large L and large p. Since the optimality bounds are somewhat large in
this region [4], we wanted to see if we could further improve our results through additional
tuning of our training process. As a test case, we selected the problem (p, L) = (99, 70).
To improve the training performance for this problem, we experimented with several of the
hyperparameters in Stable Baseline3’s implementation of PPO, along with the parameters
we used to initialize our starting policy. Ultimately, we were able to achieve improvements
by using a significantly larger number of steps between model updates (24 ∗ 2048 = 49152),
decreasing the learning rate to .0002, and decreasing the standard deviation of actions taken
by the initial policy to e−2. We also increased the total number of training time steps to
2 ∗ 106, increased the number of episodes used when evaluating the policy during training to

8



20, and decreased the evaluation frequency to every 50000 time steps. This updated training
procedure was still somewhat unreliable and would occasionally show moderate spikes of poor
performance; because of this, we performed 5 total runs of training and took the results from
the best run. However, our updated procedure performed significantly better than our old
training procedure. Figure 5 shows runs of the old training procedure (as described in section
2.4) versus the updated training procedure for the (p, L) = (99, 70) case.

Figure 5: A run of our old (left) vs updated (right) training procedure when (p, L) = (99, 70).
The blue line shows the performance of our trained policy, while the red dashed line shows
the performance of the best constant-order policy. To focus on where the policy showed the
best improvements, only the first million training time steps are shown in the right image.

Using our updated training procedure, the resulting estimate C(πr∞)/C(πPPO) ≈ 1.0639
(95% confidence interval: [1.0543, 1.0736]) was obtained. This is a slight, but noticeable
improvement over the best constant-order policy. With additional time, we could perform
a similar procedure to obtain updated results for other (p, L) combinations in this region.
Additional tuning of the other parameters could have also potentially led to even better per-
formance gains. However, recall that even if the optimality bound given by Xin & Goldberg
(2016) is large, it’s possible that the best constant-order policy performs close to optimally
anyways, in which case no amount of tuning would produce significant performance improve-
ments. Improved theoretical bounds could be a huge help in determining whether or not
this is the case, demonstrating the importance of theoretical results in reinforcement learning
problems.

4 Conclusion
We used PPO to train policies for the inventory management problem with lost sales and
positive lead times. We examined this problem across 48 different combinations of the
parameters p and L (with a specific focus on the regions with the largest optimality bounds).
Our goal was to find policies that performed better than the best constant-order policy, and
we succeeded for the values of p and L for which we hoped to do so. Our initial training
procedure produced good results for the case of large p and small L, with trained policies in
this region performing as much as 2.4x better than the best constant-order policy. While the
initial training procedure did not work for large p and large L, a modified training procedure
produced a policy in a test case that was slightly better than the best constant-order policy.

9



In the future, we would extend this work by further tuning of our training procedure to
target regions of parameter space where potential improvements might still be obtained.
However, we reiterate that the optimality bounds from [4] are upper bounds: even where
improvements could be made, it is likely impossible to obtain improvements on the scale of
the bounds given in Table A.1. (for instance, a 204x improvement in the (p, L) = (99, 1)
case).

5 Appendix

Figure 6: Table A.1. from Xin & Goldberg (2016). The entries correspond to the upper
bound on C(πr∞)/OPT (L), the equation for which was given in section 2.2.

Figure 7: 95% confidence intervals for C(πr∞)/C(πPPO) under different lead times (L) and
lost sales penalties (p), using our initial training methodology (from section 2.4). h = 1 and
λ = 1 were fixed.

10



GitHub
https://github.com/fordmatt18/gym-inventory

References
[1] Raffin, Antonin & Hill, Ashley & Ernestus, Maximilian & Gleave, Adam & Kanervisto,

Anssi & Dormann, Noah. (2019). Stable Baselines3. GitHub, GitHub repository, https:
//github.com/DLR-RM/stable-baselines3

[2] Scarf H. (1960) The optimality of (s, S) policies in the dynamic inventory problem.
Mathematical Methods in the Social Sciences (Stanford University Press, Redwood City,
CA), 196–202.

[3] Xie, Qiaomin (2021). Dynamic Programming for Average Reward MDP. ORIE 6590
course notes, Canvas. https://canvas.cornell.edu/

[4] Xin, Linwei & Goldberg, David (2016). Optimality Gap of Constant-Order Policies De-
cays Exponentially in the Lead Time for Lost Sales Models. Operations Research. 64.
10.1287/opre.2016.1514.

11

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	Introduction
	Methods
	MDP
	Long-run Average Cost
	OpenAI Gym Environment Verification
	Model Training with PPO

	Results and Discussion
	Training Results
	Visualizations of Trained Policies
	Improving training performance for large L and large p

	Conclusion
	Appendix



