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N-Queue
One of the queueing system from Homework 2: the N-queue model

Usually consist of some customer lines and service stations
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Queueing Networks
Are an important set of problems in operation research. The
question is to find the optimal way to serve the customers.

When the arrival times of customers and service times of servers
are exponentially distributed, we can model queueing networks
as MDPs via uniformization. Hence the model is known when we
know the input parameters (arrival rates, service rate, workload)

Existing work include TRPO and PPO for discounted setting ([4]
and [5]), however we are interested in the long-run average cost
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where c is a cost vector.

Approximate linear programming (ALP) [6] and Dai &
Gluzman’s work on average PPO [2] explores this cost setting.
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General environment for Queueing Networks

We create a common Gym environment:

State space: finite subsets of Nn, where n is the number of
queues in the network

Action space: maybe idle or work on different classes of jobs

Transitions: occur due to arrivals of jobs or completions of jobs.
As discussed previously (and done on HW) these are modeled as
Poisson processes

The N-queues, as well as other models, are the subclasses of our
environment.
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The Two-Series Queue

Simple example of queueing network

Two queues, two servers, each server can choose between Work
or Idle

Non-idling policy is optimal, so it’s useful as a toy problem for
our implementation of algorithms
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Other Networks

Three-class Reentrant

Arrival Routing
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Other Networks
Rybko-Stoylar

Six-class Network

Parameters for models are given in [6]. 7 / 16



The Standard PPO algorithm (Source: [1])
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Advantage Estimation for Custom PPO

The difference between standard PPO and our average cost-modified
version is the expression for the advantage estimate [3]:

Âθ(s
k
t , a

k
t ) =

T0−1∑
i=0

(r(skt+i , a
k
t+i) − µθ(r) + V̂θ(s

k
t+i+1) − V̂θ(s

k
t+i))

(for 0 ≤ t ≤ T − T0)
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Variance Reduction

The variance in the advantage estimate can be reduced if we replace
the value function estimate with an expectation, i.e. replace
V̂θ(s

k
t+i+1) with Es∼Pθ(·|skt+i )

[V̂θ(s)] so that
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(for 0 ≤ t ≤ T − T0)

and another similar expression for T0 − T ≤ t ≤ T . Performing this
replacement requires knowing the model transition probabilities,
which we do.
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Randomized Non-Idling Policy
Average cost taken over T = 20k timesteps and 100 episodes.

Networks Average Cost Regeneration Cycles
Two-Series Queue (µ1 > µ2) 4.71 ± 0.06 4.91 ± 18.46
Two-Series Queue (µ1 < µ2) 8.00 ± 0.06 9.68 ± 40.10

N-Queue 3.79 ± 0.06 9.29 ± 39.40
Arrival Routing 4.34 ± 0.04 4.91 ± 17.08

Three Class Reentrant 15.02 ± 0.39 206.81 ± 1250.83
Rybko-Stolyar 16.08 ± 0.83 267.84 ± 1876.97

Six-Class Network 9.09 ± 0.54 136.41 ± 1621.67

Regeneration cycle length is small, validates our use of long
horizons (T = 10000) in remainder of training.

Last three models are significantly more complex (see cycle
length).

Two-series queue results are optimal.
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Standard PPO

Networks Cost: γ = 1 Cost: γ = 0.99999
Two-Series Queue (µ1 > µ2) 5.50 ± 0.61 364.64 ± 2.12
Two-Series Queue (µ1 < µ2) 368.13 ± 1.31 367.75 ± 1.33

N-Queue 93.72 ± 0.92 94.66 ± 1.11
Arrival Routing 2.81 ± 0.27 3.72 ± 0.23

Three Class Reentrant 38.32 ± 0.13 38.21 ± 0.08
Rybko-Stolyar 279.04 ± 14.34 292.01 ± 11.29

Six-Class Network 149.14 ± 7.31 149.99 ± 7.92

Performance is similar across both settings of γ

We get a good cost for the first two-series model?

PPO-computed policies are all worse than the randomized policy,
except for arrival routing—a very simple network. It’s hard to
pick right hyperparameters even for simple models.
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Custom PPO

Networks Average Cost Average Cost
No VR With VR

Two-Series Queue (µ1 > µ2) 362.91 ± 1.87 29.15 ± 21.03
Two-Series Queue (µ1 < µ2) 367.36 ± 1.59 394.14 ± 6.96

N-Queue 102.47 ± 9.80 102.69 ± 1.58
Arrival Routing 5.18 ± 0.64 3.19 ± 0.28

Three Class Reentrant 44.60 ± 3.09 39.09 ± 1.50
Rybko-Stolyar 573.02 ± 17.66 564.03 ± 14.42

Six-Class Network 154.08 ± 8.17 151.11 ± 9.46

Results slightly worse than standard PPO.

Variance reduction seems to work better then no VR version, but
with longer training time.
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Conclusions

Implemented a special version of PPO with average-cost
advantage estimation + variance reduction

Had trouble finding good hyper-parameters for the set of models

Future areas of interest:

We have perfect knowledge of the model and yet we don’t use
it much—can this help inform a better algorithm design?
Explore how knowing regeneration cycle length can help with
hyper-parameter selection
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