Departments of ECE and MSE, Cornell University

ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures

Spring 2015

Homework 9: Solutions

Problem 9.1 (Electron velocity saturation at high fields in semiconductors)

(Problen, 9-1)

@-

=eFv—-@r_}

(6l ey eloctms
Te

el

dE
d4
ﬁ o ‘f
Cl'\ﬁ/v.gb (ﬂhcm J-Oﬁf‘fvf?kcw
@‘FH‘ - ¢F — P
3

P (& fbduanax, /b Aeeon,
T’/M Meneed i
hanug i"‘”‘l"“""d‘““ W

bdedvc fruwe  eatlicivg.

© steady shct, g{;(--d=0' ® gveo

e Fv = ’L'a(«)o’,

Te
(p;;«fu) J’;’] eF =
?x,{"

Tin
+
v’ = Bap T D |uw= '\ﬁ—&f : ,/’é}
¥ ;CJE m" Te

&




Problem 9.2 (Electron Scattering and Mobility)

(a) Acoustic phonon scattering:

Phonons in Semiconductors
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Typical phonon spectra of semiconductors

Vibration amplitude as a function of the
temperature: Quantum-Classical connection
of the phonon harmonic oscillator

The above is the way you can find the amplitude of phonon vibrations at a temperature T for feeding into

the golden rule calculation of the scattering rates.



Electron-Def. Pot. Acoustic Phonon interaction
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(b

Deformation Potential Acoustic Phonon
Scattering Potential

u(r, 1) = au(r, t) (6.4)

where

u(r, 1) = wexp [i(qyr — wy)] (6.5)

In these equations a is the displacement direction, and « is the amplitude.

The strain associated with the displacement is
Veu(r, 1) = a-Vu(r, 1) (6.6)

Veu(r, 1) = iq,au(r, 1) (6.7)

Equation (6.7) indicates that for the transverse components of a phonon
where the displacement and the wavevector are orthogonal, q,a = 0, and
no strain is produced. The scattering potential for the longitudinal component

is, therefore

AU, 1) = E,V-ulr. 1) 6.8)

where the deformation potential, €, in units of energy. is defined as the
proportionality constant between the scattering potential (units of energy)

and the strain.

Figure 6.2 Displacements of a diatomic chain for LA and TA phonons at (a) the
center and (b) the edge of the Brillouin zone . The lighter mass atoms are indicated
by open circles. For zone edge acoustic phunons only the heavier atoms are dis-

placed.

This is how the deformation potential scattering potential is found.



Electron-Acoustic Phonon interaction: Mobility

dr=Ajexp[ti(g-r)  Acoustic phonon scattering
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The left method is how the scattering rate is found from the scattering potential.



(b) Ionized impurity scattering rate:

Scattering by charged impurities
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Problem 9.3 (Optical absorption in graphene)
a+b) Use the expression from the handouts except that integration is now over 2D k-space and an extra
factor of two comes in because of the two pockets in the FBZ:
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¢) Incident photon flux per unit area is, /;,¢ /7@. The photon absorption rate per unit area is Ry.

Therefore, the fraction of incident photons absorbed in the graphene sheet is,

1o Ry [line = (62/41)n, ~.023.

It follows that ~2.3% of the incident photons are absorbed by graphene through interband transitions
(irrespective of the wavelength!).



Problem 9.4 (Population inversion, optical gain, and lasing)
(a)
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The above shows the equilibrium absorption coefficient of a 3D semiconductor.
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Figure 9.7. The stepwise absorption specirum for a quantum-well structure.

Equilibrium absorption coefficient in

QW is proportional to the joint DOS and .-
has 2D subband features .
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Figure 9.8. (a) Population inversion m a quantum well such that .~ ¢, > hew = E_+ F,, ~
Ey Here F1s measured from the valence bund cdge where the energy level is chosen to be
zero (h) The products of the density of states and the occupanon probability for electrons in the
conduction band p (EVf (EY and holes in the valence band p,(FYCEY = p EXL = f(F)] are
plotted vs the encrgy 7 in the vertucal scale

The above is the absorption spectrum of a 2D quantum well. Because of the quantization, and the
constant 2D DOS, the joint optical DOS is in steps for every subband of the quantum well.



(b, c, d):

Non-equilibrium Fermi-Dirac functions with
electron quasi-Fermi levels (note: not
necessary to talk about holes here)

F.: Conduction Band quasi-Fermi level

F,: Valence Band quasi-Fermi level
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Bernard-Duraffourg inversion condition

(e) One can achieve population inversion in a quantum well with a lower threshold current than in a bulk
semiconductor because the DOS in a QW is lower, so filling them with less carriers raises their Fermi-

levels more.



Problem 9.5 (Superconductivity)

The microscopic (BCS) theory of superconductivity turned out to essentially non-perturbative, because
the Schrodinger equation solution of the Cooper pair problem needs an exact solution for the “ground
state” of the system. The bound state energy of the Cooper pair problem is of the form

A~hw, -exp[- ], where 7w, is the Debye energy of the crystal, g(E,) is the DOS at the Fermi

Vog(Er)
energy, and V, is the weak attractive perturbation potential. This is of the functional form
1 : . . . o
f(x)=-exp[——]: this function does not have a Taylor series expansion. In that sense it is non-
X

perturbative.



