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Departments of ECE and MSE, Cornell University 
 

ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures 
 

Spring 2015 
 

Homework 9      Due on May 15, 2015 at 5:00 PM 
 
 

Suggested Readings:  
a) Lecture notes 

 
Problem 9.1 (Electron velocity saturation at high fields in semiconductors) 
At low electric fields, the velocity of electrons in a semiconductor increases linearly with the field 
according to v ≈ µF , where µ = eτ m /m

*  is the mobility and F  is the electric field, with τ m  being the 
momentum scattering time.  But when the electric field is cranked up, the electron velocity saturates, 
because the electrons emit optical phonons each of energy  

!ω op every  τ E  seconds, dumping the energy 
eFv  they gain from the electric field every second.  Setting up the equations for the conservation of 
momentum and energy, and solving for the steady state yields an estimate of this saturation velocity.  

Show that the saturation velocity obtained by this scheme is 
 
vsat ≈

!ω op

m* ⋅ τ m
τ E

.  Show that for a typical 

semiconductor for which  
!ω op ≈ 60 meV, m* ~ 0.2m0 , and τ m ~ τ E , the electron saturation velocity is of 

the order of ~107 cm/s.  This is a good rough number for the saturation velocity of most semiconductors. 
 
 
Problem 9.2 (Electron Scattering and Mobility) 

In this problem, we will explain the temperature 
dependence of the electron mobility in some (not all!) 
doped 3D semiconductors.  The adjacent figure shows 
the experimental result: at low temperatures, the electron 

mobility goes as µ(T ) ~ T
3
2 , and at high temperature it 

goes as µ(T ) ~ T
− 3
2 .  We first connect the mobility to the 

scattering times via the Drude-like result µ = e τ /m* . 
 
(a) Phonon scattering: We showed in class that the 
scattering rate of electrons due to acoustic phonons in 
semiconductors is given by Fermi’s golden rule result 
for time-dependent oscillating perturbations 

 

1
τ (k→ k ')

= 2π
!
|< k ' |W (r) | k >|2 δ (Ek − Ek ' ± !ω q ) , 

where the acoustic phonon dispersion for low energy (or 
long wavelength) is ωq ~ vsq , and the scattering potential is W (r) = Dc∇r ⋅u(r) .  Here Dc  is the 

deformation potential (units: eV), and u(r) = nu0 exp[iq ⋅r]  is the spatial part of the phonon displacement 
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wave, n  is the unit vector in the direction of atomic vibration and q  points in the direction of wave 

propagation.  We also justified why the amplitude of vibration  
2Mω q

2u0
2 ≈ Nph × !ω , where 

 
Nph = 1/ [exp(!ω q / kBT )−1]  is the Bose-number of phonons, and the mass of a unit cell of volume Ω  is 
M = ρΩ , where ρ  is the mass density (units: kg.m-3).  Show that a transverse acoustic (TA) phonon does 
not scatter electrons, but longitudinal acoustic (LA) phonons do.  Now show using your result of HW 8, 
Problem 8.4 for the ensemble averaged τ  that the electron mobility in three dimensions due to LA 

phonon scattering is 

 

µLA =
2 2π
3

e!4ρvs
2

m*( )
5
2 Dc

2 (kBT )
3
2

~ T
− 3
2 .  This is a very useful result. 

 
(b) Impurity scattering: Using Fermi’s golden rule, calculate the scattering rate for electrons due to a 

screened Coulombic charged impurity potential V (r) = − Ze2

4πε sr
exp[− r

LD
] , where Ze  is the charge of the 

impurity, ε s  is the dielectric constant of the semiconductor, and LD = ε skBT
ne2

 is the Debye screening 

length and n  is the free carrier density.  This is the scattering rate for just one impurity.  Show using the 
result in HW8, Problem 8.5 with a (1− cosθ )  angular factor for mobility that if the charged-impurity 

density is ND , the mobility for 3D carriers is µI =
2
7
2 (4πε s )

2 (kBT )
3
2

π
3
2Z 2e3 m*( )

1
2 NDF[β ]

~ T
3
2

ND
.  Here 

 
β = 2 2m*(3kBT )

!2
LD  is a dimensionless parameter, and F[β ] = ln[1+ β 2 ]− β 2

1+ β 2  is a weakly varying 

function.  This famous result is named after Brooks and Herring who derived it first. 
 
(c) Now combine your work from parts (a) and (b) of the problem to explain the experimental dependence 
of mobility vs temperature and as a function of impurity density as seen in the Figure above.   
 
Problem 9.3 (Interband optical absorption in graphene) 
Graphene has two complete carrier pockets (or six 1/3rd carrier pockets) in the FBZ, as shown below.  
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In each carrier pocket, the conduction and valence band dispersions are: 

 ( ) 22
yxc kkvkvkE ++=+= !!

"
 

 ( ) 22
yxv kkvkvkE +−=−= !!

"
 

where the wavevector is measured, for simplicity, from the pocket center (as opposed to from the zone 
center) and the zero of energy is also chosen to coincide with pE . Assume that the temperature is close 
to zero (i.e. T ≈ 0K) and the valence band is full and the conduction band is empty. Light of frequency ω  
is incident normally on the graphene sheet, as shown below.  

 
 
The average value of the momentum matrix element is:  

 
2

ˆ.
222 vmnP o

vc =
!

 

Provided that the polarization unit vector of the incident field is in the plane of the graphene sheet.   
Assume that the intensity of the incident light is incI . Assume that for all practical purposes the photon 
momentum is small enough to be taken as zero (i.e. 0=q

!
).  

 
a) Write an expression for the rate of stimulated absorption per unit area ↑R  (units: 1/m2-sec) in 

graphene in terms of the incident light Intensity incI . Make sure you include contributions from both 
spins and both carrier pockets. Write your answer as an integral over k-space.  
 
b) Evaluate your integral in part (a) and show that ↑R  can be written as: 

 ⎟
⎠
⎞⎜

⎝
⎛=↑ ω

η
!
inc

o
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⎪
⎨
⎧

=
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o
o ε

µ
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Find the value of the “constant” in the expression above and also specify the units of this “constant”.   
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c) As the light crosses the graphene sheet, some photons are lost because of absorption in the graphene 
sheet. From your knowledge of ↑R  and the incident light Inensity incI  find out what fraction of the 
incident photon flux is absorbed in the graphene sheet. You will find, to your amazement perhaps, that 
this fraction is independent of the light frequency as well as of any material parameter value and depends 
only on few fundamental constants of physics. Find a numerical value for this fraction. 
  
 
Problem 9.4 (Population inversion, optical gain, and lasing) 
In class, we derived that the equilibrium optical absorption coefficient of a semiconductor is 

 
α 0 (!ω ) =

e
m0

⎛
⎝⎜

⎞
⎠⎟

2 2π Pcv ⋅ n̂
2

ε0nωc
⋅gJ (!ω − Eg ) , where  

gJ (!ω − Eg ) is the joint electron-photon DOS, and all 

symbols have their usual meanings.  We also found that under non-equilibrium conditions, the optical 
absorption coefficient becomes  α (!ω ) =α 0 (!ω )[ fv (k)− fc (k)] , where the electron occupation functions 

of the bands are given by the Fermi-Dirac distribution fv (k) =
1

1+ exp[Ev (k)− Fv
kBT

]
, but with a quasi-Fermi 

level Fv  for the corresponding band as the mathematical means to capture non-equilibrium.  Consider 
semiconductors and heterostructures with parabolic bandstrcutures for the conduction and valence bands 

 
Ev (k) = − !

2k2

2mv
* ,    Ec (k) = Eg +

!2k2

2mc
*  for this problem. 

  
(a) Make a sketch of the equilibrium absorption coefficients  α 0 (!ω )  for a bulk 3D semiconductor, and a 
2D quantum well vs the photon energy  !ω .   
 
(b) Plot the Fermi difference function fv (k)− fc (k)  as a function of the photon energy  !ω  for a few 
choices of the quasi-Fermi levels Fv ,Fc  of the valence and conduction bands.  Specifically, track the 
photon energy at which the difference function changes sign from –ve to +ve.  
 
(c) Now combine (a) and (b) to plot the non-equilibrium absorption coefficient  α (!ω )  for the choices of 
Fv ,Fc  from part (b).  Discuss the significance of a negative absorption coefficient.  
 
(d) Show that the requirement for population inversion is  Fc − Fc > Ec − Ev = !ω .  This is the famous 
Bernard-Duraffourg condition for population inversion in semiconductor lasers. 
 
(e) Based on your results above, explain why semiconductor heterostructure quantum wells have lower 
injection thresholds for lasing than 3D bulk semiconductors.  This idea and demonstration won Herb 
Kroemer and Zhores Alferov the 2000 Nobel prize in physics. 
 
 
Problem 9.5 (Superconductivity) 
Briefly explain the basic idea behind the BCS theory of superconductivity, and why it was not possible to 
obtain its microscopic theory from perturbative methods of quantum mechanics. 


