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Departments of ECE and MSE, Cornell University 
 

ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures 
 

Spring 2015 
 

Homework 8           Due on May 1, 2015 at 5:00 PM 
 
 

Suggested Readings:  
a) Lecture notes 

 
Problem 8.1 (ZigZag Carbon Nanotubes) 
The energy band dispersion of graphene can be written as, 

 
 
E
!
k( ) = Ep ± "v (kx − Kxp )

2 + (ky − Kyp )
2  

where (Kxp,Kxp ) is the location of the vertex of the Brillouin 
zone (the “K” point).  The gap at this point is zero for 2D 
graphene – as you have done before.   
 
Consider a semiconducting zizag nanotube made by “rolling 
up” graphene with circumference given by C = ma0  

where a0  
is the lattice constant, and m  an integer that is not a multiple 
of 3.  Also C = 2πR

 
where R  is the radius of the nanotube.  

Assume that C >> a0 .  
 
a) Show that the bandgap is 

 
Eg = 2!v 3R . What is the 

magnitude (in eV) of the bandgap for a 1 nm radius zigzag 
nanotube? 
 
b) The total electron density n  (units: #/m) at the bottom of the two lowest (and degenerate) conduction 
bands can be written as: 
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Find the conduction band density of states function ( )Eg D1  for the nanotube and sketch it. Don’t forget 
to include band as well as spin degeneracies in ( )Eg D1 .  
 
c) Suppose T=0K. Find an expression relating the electron density n  to the Fermi energy FE  by 
evaluating the integral in part (b) exactly.  
 
d) Sometimes it is helpful to assign effective masses to the carriers near the band edges in semiconducting 
nanotubes even though the energy band dispersion is not exactly parabolic. Show that the 1D energy 
subband dispersions for the conduction and valence bands of a semiconducting zigzag nanotube of radius 
R  can be approximately written right near the band edges in the following parabolic forms: 



 

 2 

( ) ( )
h

xg
pxv

e

xg
pxc m

kE
EkE

m
kE

EkE
2222

2222 !!
−−≈++≈  

and find expressions for the electron and hole effective masses em  and hm .  Would the electrons and 
holes be lighter or heavier in nanotubes of larger radii?  
 
Problem 8.2 (Ballistic Transistor Characteristics and Quantum Effects) 
In class, we derived the characteristics of a ballistic field-effect transistor.  You are going to fill in a few 
steps, and solve a closely related problem.  
 

a) Make  (log-scale and linear-scale) plots of the gate-induced 2D electron gas (2DEG) carrier 
density at 300K and 77K vs the gate voltage of FETs for an insulating barrier of 
tb = 2 nm,  εb = 10ε0  for three semiconductor channels: one that has mc

* = 0.2m0,  gs = 2,  gv = 2 , 

the second has mc
* = 0.2m0 ,  gs = 2,  gv = 1 , and the third has mc

* = 0.05m0,  gs = 2,  gv =1 .  What is 
the difference?  [see Fig 10.2 of notes for a representative figure] 

b) Show why the ballistic current density is given by J2d = J0[F1/2 (ηs )− F1/2 (ηs − vd )] , where 

J0 = q 4π !Nc

mc
* , and all symbols have their usual meanings (as they appear in the 

notes/handouts, Nc  is the effective conduction band edge DOS).    
c) Make a plot of the ballistic FETs of the three semiconductors of part (a).  Make the drain current 

vs gate voltage and drain current vs drain voltage plots, similar to Fig 10.4.   
d) Describe qualitatively what sorts of changes in the device characteristics would you expect if 

instead of the 2DEG channel, you had a 1D channel in the ballistic FET.  Specifically, show that 
the ballistic conductance per 1D channel is limited to the quantum of conductance, where 

G0 = gsgv
q2

h
 where h is the Planck’s constant. 

 
Problem 8.3 (Topological Insulator Field-Effect Transistors) 
A topological insulator is a crystal that has a strong coupling of the spin to the crystal momentum of the 
electron resulting in a strange feature in the energy bandstructure.  The upshot of the effect of geometry 
and topology on the electron Bloch functions is this: there are certain crystals for which the energy 
bandstructure Ebulk (kx ,ky )  of the bulk (“interior”) of the crystal is similar to a traditional semiconductor 

and has a bandgap. But there are zero-gap bands Esurf (kx )  attached to the surface (or edge) that are 
topological in origin.  Just like one can smoothly deform a donut into a coffee cup (both have one hole), 
but one cannot deform a donut into a sphere, it turns out that the surface (or edge) states are robust and 
one cannot get rid of them in these materials, called Topological Insulators.   
 
In this problem, we consider a 2D Topological Insulator (TI) material as the channel of a ballistic FET, 
and borrow heavily from the results of Problem 8.2 above to gain insight to transport in them.   
 

a) You have solved the ballistic FET problem with a 2DEG channel of width W .  Sketch a 
log(Id )−Vgs  curve of a ballistic FET that is a normal semiconductor with a gapped bulk 

bandstructure Ebulk (kx ,ky ) , and that has NO topological edge states.   
b) Now consider that this channel is indeed a TI, and has additional one-dimensional topological 

edge states Esurf (kx )  along the physical edges of the 2DEG, separated in space by W .  Because 
of the spin-momentum locking, in these edge states the right-going and left-going states have 
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opposite spins (this is a key idea of a TI!).  In other words, the spin-degeneracy of the right-going 
state is not 2, but 1 – and all right-going carriers have the same (say, up) spin, which is opposite 
to the spin (down) of all the left going carriers.  This is shown schematically in the figure below.  
Consider the dispersion of the edge states to be 

 
Esurf (kx ) = !vFkx , and show that the ballistic 

conductance of each edge channel is G0 =
q2

h
, even after taking the spin into account.  Compare 

with your answer in Problem 8.2 (d). 

 
c) From the figure above, show that the net ballistic conductance of the two topological edge 

channels is G0 = 2
q2

h
, no matter what the gate voltage.  

d) Sketch how this modifies the log(Id )−Vgs  curve that you sketched in part (a).  What is the 
minimum conductance?   

e) Explain why this sort of behavior cannot be obtained if I took a Silicon MOSFET and attached 
two conventional semiconducting 1D quantum wires at the two edges.  What would the 
conductance minimum be then?  If you have got to this point, you should be able to understand 
this paper that lays claim to be the first experimental observation of a TI state: Science vol 318, 
pg 766-770, 2007.  Especially look at Fig 4 and compare with your sketch in (d). 

f) If you can find an alternate explanation of the results observed in the paper, you can publish your 
results – this is a matter that is far from resolved! 

  
 
 
 
Problem 8.4 (Boltzmann Transport in d-dimensions) 
We derived the solution to the Boltzmann transport equation in the relaxation-time approximation for 

elastic scattering events to be f (k) ≈ f0 (k)+τ (k)(−
∂f0 (k)
∂ε (k)

)vk ⋅F , where all symbols have their usual 

meanings.  Use this to show that for transport in d dimensions in response to a constant electric field E, in 

a semiconductor with an isotropic effective mass m*, the current density is given by J =
nq2 τ
m* E , with 

τ = 2
d
⋅
dε ⋅τ (ε )ε

d
2 (− ∂f0 (ε )

∂ε
)∫

dε ⋅ε
d
2
−1
f0 (ε )∫

, where the integration variable ε = ε (k)  is the kinetic energy of carriers.  
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You have now at your disposal the most general form of conductivity and mobility from the Boltzmann 
equation for semiconductors that have a parabolic bandstructure!  

Hints: The volume of a d-dimensional sphere in k-space is Vd =
π

d
2kd

Γ(d
2
+1)

, and the corresponding surface 

area is Sd = ∇kVd =
dπ

d
2kd−1

Γ(d
2
+1)

.  Here Γ(...)  is the Gamma function with the properties Γ(x +1) = x ⋅Γ(x)  

and Γ(
1
2
) = π .  Verify that these formulae give you the familiar ‘volume’ and ‘surface area’ for d=3 

(sphere) and d=2 (circle).  You may (or may not, depending on your approach) need the DOS of parabolic 

bands in d dimensions:  
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.  Again, plug in d=3, 2, and 1, and you should 

recover familiar expressions for DOS in different dimensions.   
 
 
 
 
Problem 8.5 (Scattering from uncorrelated events) 
Show using Fermi’s golden rule that if the scattering rate of electrons in a band of a semiconductor

 
due to 

the presence of ONE scatterer of potential W (r)  centered at the origin is 

S(k→ k ') = 2π
!
|< k ' |W (r) |k >|2 δ (Ek − Ek ' ) , then the scattering rate due to Ns scatterers distributed 

randomly and uncorrelated in 3D space is Ns ⋅S(k→ k ') .  This argument is subtle, and effects of 
interference should enter your analysis.   
 
Hints: Add the potentials of each randomly distributed impurity for the total potential 
Wtot (r) = W (r −Ri )i∑ .  Use the effective mass equation for the electron states to show that the matrix 
element is a Fourier transform.  Then invoke the shifting property of Fourier transforms.  
  


