ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures Spring 2015

Homework 7: Solutions

Due on April 20, 2015 at 5:00 PM

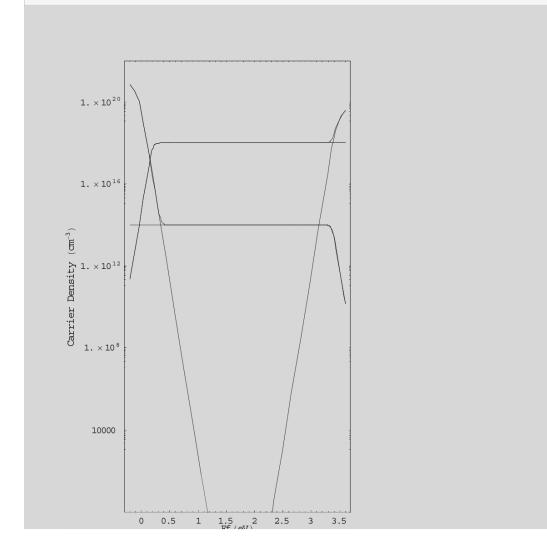
Problem 7.1 (The deep-acceptor problem and the 2014 Physics Nobel Prize)

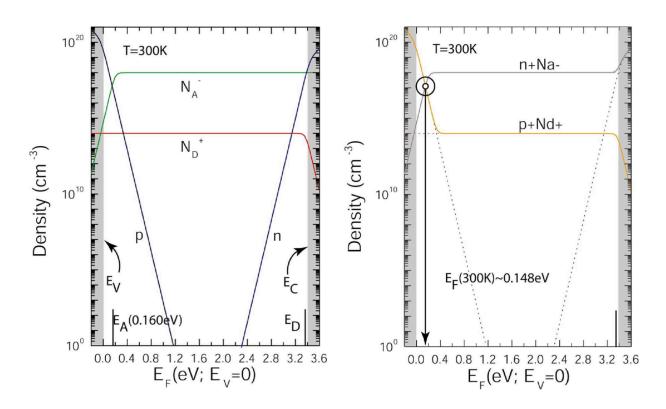
```
q = 1.6 * 10^{-19}
                         (* Electron charge, Coulomb *)
hbar = \frac{6.63}{2\pi} * 10^{-34} (* Reduced Planck's constant, J.s *)
kb = 1.38 * 10^{-23}
                        (* Boltzmann constant, J/K *)
m0 = 9.1 * 10^{-31}
                        (* Electron rest mass, Kg *)
                       (* Electron effective mass, CB *)
meGaN = 0.2 * m0
                            (* Hole effective mass, VB *)
mhGaN = 1.4 * m0
Nc[T_] = 2 * \left(\frac{\text{meGaN} * \text{kb} * \text{T}}{2 * \pi * \text{hbar}^2}\right)^{\frac{3}{2}} * 10^{-6} (* CB edge Effective DOS, cm<sup>-3</sup> *)
Nv[T_{]} = 2 * \left(\frac{mhGaN * kb * T}{2 * \pi * hbar^2}\right)^{\frac{3}{2}} * 10^{-6} \quad (* VB edge Effective DOS, cm^{-3} *)
\mathbf{F}[\eta_{-}] = \mathbf{Abs} \left[ \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\sqrt{\mathbf{x}}}{1 + \mathbf{Exp}[\mathbf{x} - \eta]} \, d\mathbf{x} \right]
 (* Fermi-Dirac Integral of order j=1/2 *)
 (* In energy scale, Ev is set to zero, and Ec=Ev+Eg=3.4 eV. Ef is in eV too! *)
                        (* Bandgap of GaN, eV. Also conduction band edge!*)
Eg = 3.4
Ea = 0.16
                        (* Acceptor ionization energy, eV *)
Ed = Eg - 0.01 (* Donor activation energy, eV *)
                   (* Donor atom volume density, cm<sup>-3</sup> *)
ND = 10^{14}
NA = 10^{18} (* Acceptor atom volume density, cm<sup>-3</sup> *)
NDp[Ef_, T_] = \frac{1}{1 + 2 * \text{Exp}\left[\frac{q*(Ef-Ed)}{kb*T}\right]}
                                                    (* Ionized donor density, cm<sup>-3</sup> *)
NAm[Ef\_, T\_] = \frac{NA}{1 + 4 * Exp[\frac{q_*(Ea-Ef)}{kb*T}]} \quad (* Ionized acceptor density, cm<sup>-3</sup> *)
n[Ef\_, T\_] = Nc[T] * F\Big[\frac{q*(Ef-Eg)}{kb*T}\Big] \quad (* Free electron density in cm<sup>-3</sup> dependent on Ef *)
p[Ef_{-}, T_{-}] = Nv[T] * F\left[\frac{q*(0-Ef)}{1-b_{-}m_{-}}\right]  (* Free hole density in cm<sup>-3</sup> dependent on Ef *)
```

```
(* Numerical Solution of the charge-
neutrality equation gives us the Fermi Level in eV. Note that you can do this
for any general temperature and doping densities. *)
FindRoot[NDp[Ef, 300] + p[Ef, 300] - (NAm[Ef, 300] + n[Ef, 300]) == 0, {Ef, 0}]
{Ef > 0.147989}
```

```
p[0.147989, 300] (* This is the Hole concentration, the semiconductor is obviously p-type *) 1.35713\times10^{17}
```

 $\label{eq:commented} $$(\star---You\ can\ do\ a\ Graphical\ Solution\ also\ -\ See\ the\ attached\ figures,$$ which are basically the plot\ below\ labeled\ and\ suitably\ commented\ upon----*)$$ $$LogPlot[\{NDp[Ef,\ 300],\ NAm[Ef,\ 300],\ n[Ef,\ 300],\ p[Ef,\ 300],\ NDp[Ef,\ 300] + p[Ef,\ 300],\ n[Ef,\ 300],\ p[Ef,\ 300],\ n[Ef,\ 300],\ n[$





Problem 7.2 (Time-dependent Effective Mass Equation)

a) The answer is,

$$\phi(\vec{r},t) = \exp\left[-\frac{i}{\hbar} \int_{0}^{t} (E(t') + e\vec{E} \cdot \vec{r}) dt'\right]$$

The solution can be checked by direct substitution is the effective mass equation,

$$\left[E_{n}(\vec{k}_{o}-i\nabla)+e\vec{E}.\ \vec{r}\right]\phi(\vec{r},t)=i\hbar\frac{\partial\phi(\vec{r},t)}{\partial t}$$

b) Upon substitution in the effective mass equation, the assumed solution gives,

$$E(t) = E_n \left(\vec{k}_o - \frac{e\vec{E}}{\hbar} t \right)$$

Therefore, the energy of the solution is time dependent and changes with time as the wavevector (or the crystal momentum) changes.

Problem 7.3 (Probability currents for the Effective Mass equation)

a) Note that irrespective of the details of the energy band dispersion relation, a plane wave is always an eigenfunction of the $E_n(\vec{k}_o - i\nabla)$ operator,

$$E_{n}(\vec{k}_{o} - i\nabla)\phi(\vec{r}, t) = E_{n}(\vec{k}_{o} - i\nabla)e^{i\vec{q}.\vec{r}} = \sum_{j} E_{n}(\vec{R}_{j})e^{i(\vec{k}_{o} - i\nabla)\vec{R}_{j}}e^{i\vec{q}.\vec{r}}$$

$$= \sum_{j} E_{n}(\vec{R}_{j})e^{i\vec{k}_{o}.\vec{R}_{j}}e^{i\vec{q}.(\vec{r} + \vec{R}_{j})} = E_{n}(\vec{k}_{o} + \vec{q})e^{i\vec{q}.\vec{r}}$$

So a plane wave has to satisfy the equation,

$$\left[\hat{E}_{c}(\vec{k}_{o} - i\nabla)\right]\phi(\vec{r}) = E \phi(\vec{r})$$

with energy eigenvalue equal to $E_c(\vec{k}_o + \vec{q})$, which equals,

$$E_c + \frac{\hbar^2 (q_x)^2}{2m_x} + \frac{\hbar^2 (q_y)^2}{2m_y} + \frac{\hbar^2 (q_z)^2}{2m_z}$$

b)
$$\psi(\vec{r}) = \phi(\vec{r}) \psi_{c,\vec{k}_o}(\vec{r}) = e^{i\vec{q}.\vec{r}} \psi_{c,\vec{k}_o}(\vec{r})$$

$$\Rightarrow \psi(\vec{r} + \vec{R}) = \phi(\vec{r} + \vec{R}) \psi_{c,\vec{k}_o}(\vec{r} + \vec{R}) = e^{i(\vec{k}_o + \vec{q})\vec{r}} \phi(\vec{r}) \psi_{c,\vec{k}_o}(\vec{r})$$

c)
$$J_{\alpha}(\vec{r}) = \sum_{\beta} \phi^{*}(\vec{r}) \frac{\hbar}{2im_{\alpha\beta}} \partial_{\beta} \phi(\vec{r}) + c.c.$$

$$\Rightarrow J_{x}(\vec{r}) = \phi^{*}(\vec{r}) \frac{\hbar}{2im_{x}} \partial_{x} \phi(\vec{r}) + c.c = \frac{\hbar q_{x}}{m_{x}}$$

$$\Rightarrow J_{y}(\vec{r}) = \phi^{*}(\vec{r}) \frac{\hbar}{2im_{y}} \partial_{y} \phi(\vec{r}) + c.c = \frac{\hbar q_{y}}{m_{y}}$$

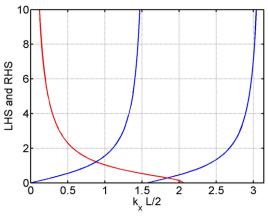
$$\Rightarrow J_{z}(\vec{r}) = \phi^{*}(\vec{r}) \frac{\hbar}{2im_{z}} \partial_{z} \phi(\vec{r}) + c.c = \frac{\hbar q_{z}}{m_{z}}$$

Problem 7.4 (A Quantum Well in a Semiconductor Heterostructure)

a) The transcendental equation to be solved are:

$$\begin{cases} \tan\left(\frac{k_{x}L}{2}\right) = \frac{m_{x1}}{m_{x2}}\frac{\alpha}{k_{x}} = \frac{m_{x1}}{m_{x2}}\frac{\sqrt{\frac{2m_{x2}}{\hbar^{2}}}\Delta E_{c} - \frac{m_{x2}}{m1}k_{x}^{2}}{k_{x}} \\ -\cot\left(\frac{k_{x}L}{2}\right) = \frac{m_{x1}}{m_{x2}}\frac{\alpha}{k_{x}} = \frac{m_{x1}}{m_{x2}}\frac{\sqrt{\frac{2m_{x2}}{\hbar^{2}}}\Delta E_{c} - \frac{m_{x2}}{m_{x1}}k_{x}^{2}}{k_{x}} \end{cases}$$

These are slightly modified from the ones in the lecture handouts because the effective masses in the x-direction in the well and the barrier regions are different. We calculate the value of k_x for which the RHS goes to zero. This comes out to be, $k_x L/2 = 2.05$. This is bigger than $\pi/2$ but smaller than π so there are two bound states.



b) The RHS and the LHS of the transcendental equations are plotted. The intersections give the quantized values of $\boldsymbol{k_X}$. The corresponding energies are:

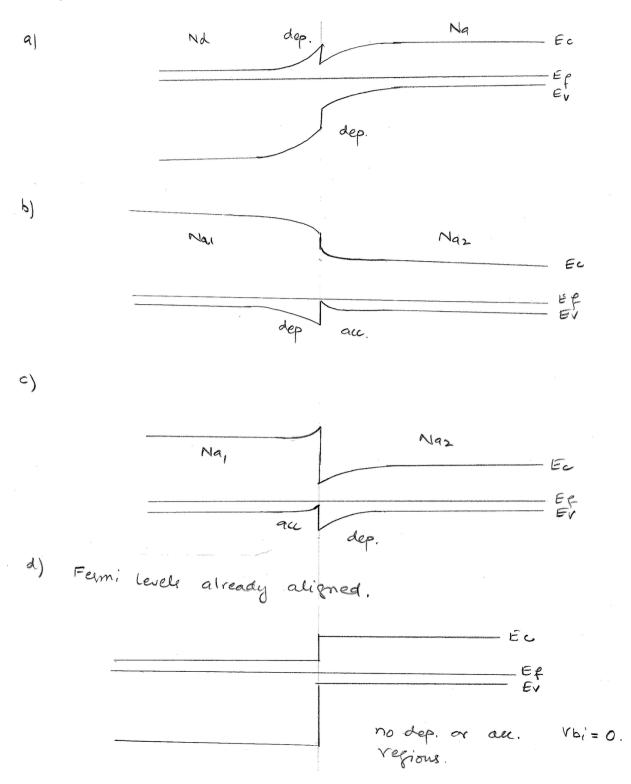
$$E_1 = 27.7 \text{ meV}$$

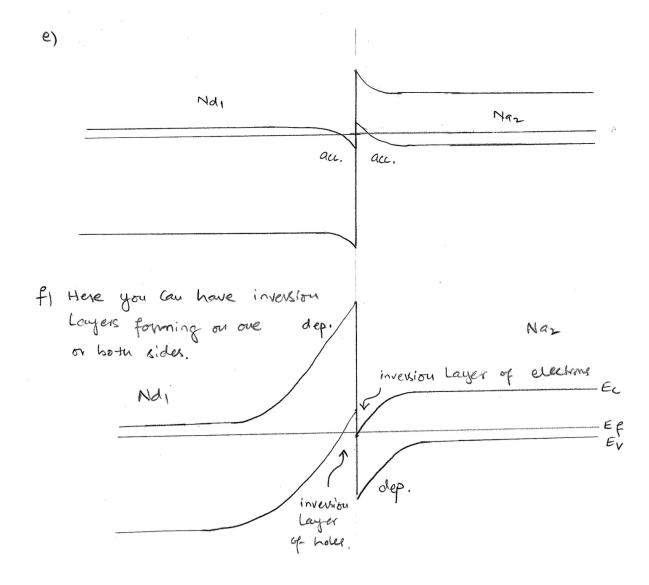
 $E_2 = 121.3 \text{ meV}$

c)
$$n = \frac{\sqrt{m_y m_z}}{\pi \hbar^2} KT \log \left(1 + e^{(E_f - E_1 - E_{c1})/KT}\right) + \frac{\sqrt{m_y m_z}}{\pi \hbar^2} KT \log \left(1 + e^{(E_f - E_2 - E_{c1})/KT}\right)$$

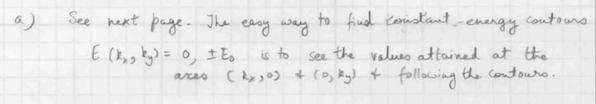
d) Assume T=300K (room temperature). Plot the RHS as a function of the Fermi level and see which value of the Fermi level gives you the electron density on the LHS. This method yields $E_f - E_{c1} = 53.4$ meV.

Problem 7.5 (Equilibrium in Semiconductor Heterojunctions with various band offsets)





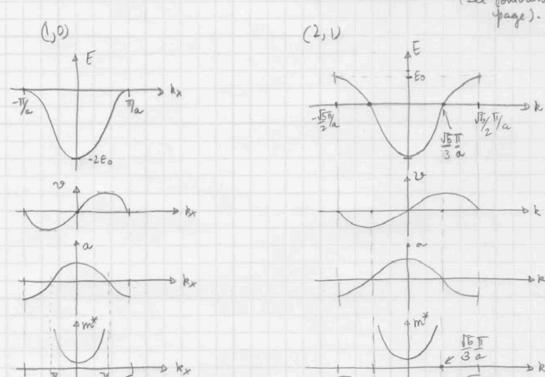
Problem 7.6 (Bloch transport and Bloch Oscillations)

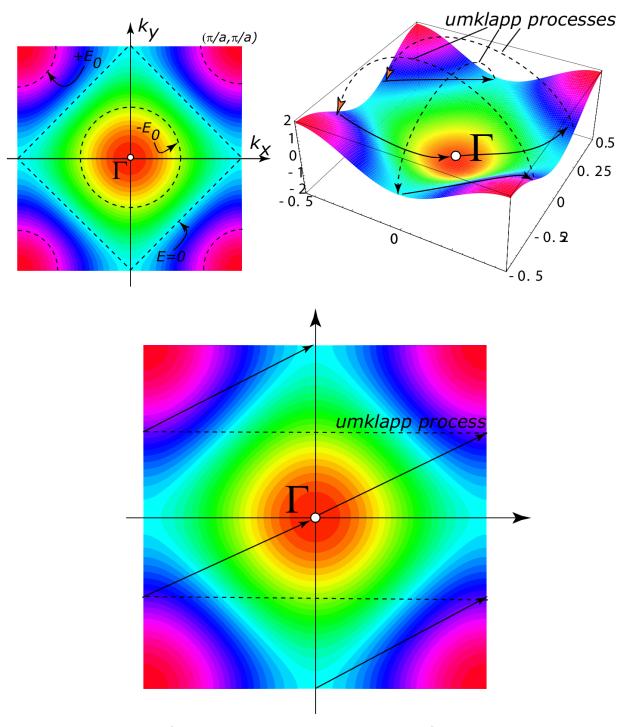


b) In the (1,0) direction,

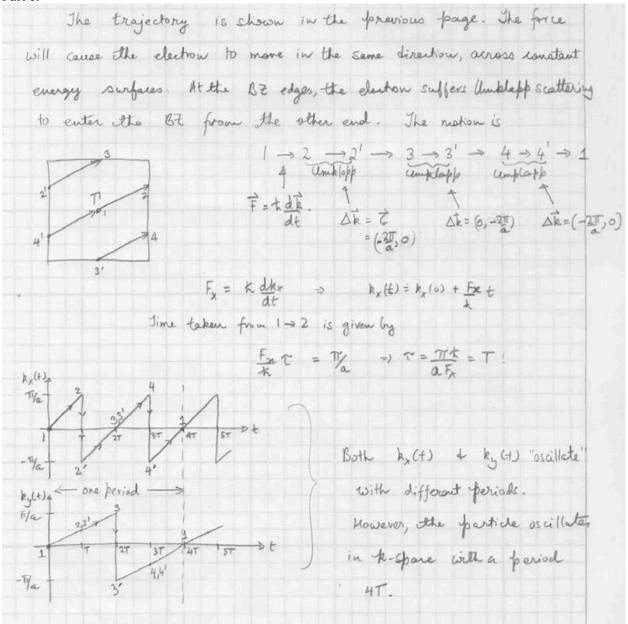
$$E(k_x, 0) = -E_0[\cos k_x a + I] \rightarrow from 0 + 0 - 2E_0$$
.

In the (2,1) direction,

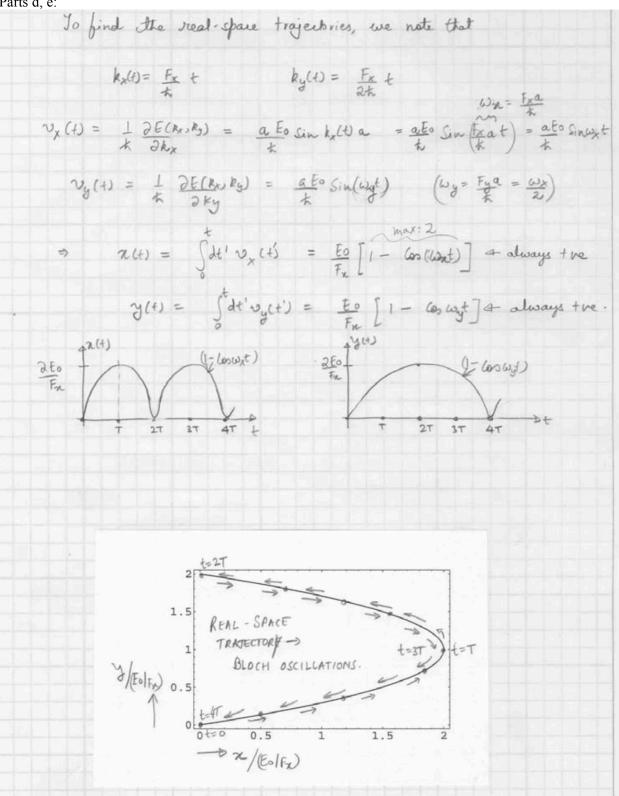




Electron trajectory in the BZ (Bloch Oscillations)



Parts d, e:



Part f:

Block oscillations: Attempts to mitigate the effect of Scattering to observe
$$BO^S$$
 have led to investigation of superlattices, with artificial periodicity $L=na$, which leads to a BT edge at $A = \frac{1}{2} \frac{1}{n} = \frac{1}{n}$ times smaller than the crystal BT.

Various approaches are feasible – other than the superlattice approach mentioned here!