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Departments of ECE and MSE, Cornell University 
 

ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures 
 

Spring 2015 
 

Homework 7      Due on April 20, 2015 at 5:00 PM 
 
 

Suggested Readings:  
a) Lecture notes 

 
Problem 7.1 (The deep-acceptor problem and the 2014 Physics Nobel Prize) 
Magnesium is a relatively “deep acceptor” in the wide bandgap semiconductor GaN.  The acceptor 
ionization energy is EA~160meV.  Consider a GaN sample (Eg=3.4 eV, mc~0.2m0, mv~1.4m0) doped with 
NA=1018/cm3 of Magnesium atoms.  In the process of doping this sample with Magnesium, unintentional 
donors of density ND=1014/cm3 (ED=10meV) also incorporate into the semiconductor.   

a) Find the Fermi level Ef in the semiconductor at T=300K. 
b) For T=300K, Plot n, p, NA

-, ND
+, n+ NA

-, and p+ND
+ as a function of the Fermi level EF.  

Remember the Fermi level can be within the gap or in the conduction or valence bands.  
Therefore choose values of EF from below EV to above EC.  Indicate in the plot where the real 
Fermi level at 300K is.  Explain. 

c) Indicate the donor and acceptor ionization energies in your figure. 
d) What are the densities and types of mobile carriers in the sample at 300K?  Is the sample n- or p-

type?   
e) Do an online research of the connection between the p-type doping problem of wide-bandgap 

semiconductors and the 2014 Physics Nobel prize award. 
 
Problem 7.2 (Time-dependent Effective Mass Equation) 
 
Sometimes, for example when the external potential is time-dependent, time-dependent solutions are 
sought. Suppose the external potential is time-dependent and is ( )trU ,

!
. We want to solve the time-

dependent Schrodinger equation, 
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Suppose we assume a solution for electron state near wavevector ok
!

 based on a time-dependent envelope 
function, 
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The underlying assumption for the above form of the solution is that the applied potential is slowly 
varying both in space and time so that the electron does not transition to another band. Then, following 
exactly the same steps as in the lecture notes, the envelope function can be shown to satisfy the time-
dependent effective mass equation, 

( ) ( )[ ] ( ) ( )
t
tritrtrUikE on ∂

∂=+∇− ,,,
!

"
!!! φφ  

a) Consider the case when a uniform DC electric field is applied so that, 
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Although the potential is time-independent we seek a time-dependent solution by solving the time-
dependent effective mass equation. Find ( )tr ,!φ  that satisfies, 
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subject to the initial condition, 
  ( ) ( )rtr
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,0, ψψ ==         or             ( ) 10, ==tr
!
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And show that your solution indeed satisfies the time-dependent effective mass equation.  
Hint: look back at your earlier handout on electron dynamics in an applied uniform DC electric field.  
 
b) The time-dependent solution found in part (a) has a time-dependent energy ( )tE . What is it? 
 
Problem 7.3 (Probability currents for the Effective Mass equation) 
 
Consider a material with the conduction band dispersion given by, 
 
 
 
a) Show that the plane wave envelope function, 
  
 
 
is a solution of the effective mass equation with ( ) 0=rU

!
, 

 
 
 
b) Show that with ( ) 0=rU

!
, the complete solution ( )r!ψ  is a Bloch function (i.e. satisfies the Bloch’s 

theorem) and has a crystal momentum equal to okqk
!!!

+= . Note that in the absence of any external 
potential the solution must necessarily satisfy Bloch’s theorem and must be a Bloch state.   
 
c) Find the probability current vector associated with the plane wave envelope function of part (a). Note 
that the probability current is given by a vector with x,y, and z components. 
 
Problem 7.4 (A Quantum Well in a Semiconductor Heterostructure) 
 
Consider a 80 Angstroms thick quantum well (i.e. AL 80= ), as shown below. Suppose that 

meV150=Δ cE . The conduction band dispersion relations are as follows: 
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a)  How many conduction band bounds states are there in the quantum well? Analysis done in the lecture 
notes will not apply directly since the masses in the x-direction are different in the well and barrier 
materials.  
 
b) Find the quantized energies relative to the conduction band edge 1cE  of all the bound states in meV 
units? You will have to numerically or graphically solve this part.   
 
c) Suppose the position of the Fermi level fE  is known. Using your results from parts (a) and (b), write 
an expression that relates the total electron density n  (units: #/m2) in the quantum well to the Fermi level. 
There should be no unevaluated integrals in your answer. Hint: The following integral might prove 
helpful:  
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d)  Suppose somebody tells you that the total electron density in the quantum well is 1610  1/m2. Find the 
position of the Fermi level with respect to the conduction band edge (i.e. find 1cf EE − ) in meV units. 
Assume room temperature. You might have to solve this part numerically.  
 
Problem 7.5 (Equilibrium in Semiconductor Heterojunctions with various band 
offsets) 
 
In each of the parts given below band diagrams of two different semiconductors are drawn (one on the left 
side and the other on the right side). In each case you are supposed to sketch the equilibrium band 
diagram when a heterojunction is formed between the two semiconductors. In each case indicate the 
depletion and/or accumulation and/or inversion regions that may exist in equilibrium on either side of 
the heterointerface. For your convenience, I have already taken the liberty of aligning the band diagrams 
such that the alignment shown corresponds to the electron affinity rule (as shown explicitly in part (a)). 
All the labels are also shown in more detail in part (a), and which you can use for the other parts as well.   
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e)  

 
f)  

 
 
Problem 7.6 (Bloch transport and Bloch Oscillations) 
The bandstructure of a fictitious 2D crystal with a square lattice (of lattice constant a  is given by  

E(kx ,kx ) = −E0[cos(kxa)+ cos(kya)]  
a) Make a semi-quantitative plot of the constant energy contours in the 1st BZ, and highlight the 

energies E = 0,±E0 .  
b) Make a semi-quantitative plot of the effective mass in the (1,0) or kx-direction, and in the (2,1) 

directions of the 1st BZ. 
c) An ‘electron’ is initially ‘located’ at the Γ  point k = (kx,ky ) = (0, 0)  in k-space, and 

r = (x, y) = (0,0)  in real space.  Argue why this state cannot be an electron in an energy 
eigenstate of the 2D crystal, but a wave-packet.  At t = 0 , a force F = (Fx ,Fy )  from an electric 

field is turned on. The force points in an oblique direction such that Fx = 2Fy .  Show the k-space 
trajectory of the electron through the 1st BZ, including Umklapp processes, for the time interval 
0 ≤ t ≤ 4T , where  T = π! / aFx . 

d) Calculate and plot the x- and y-components of the velocity and position of the electron, all as 
functions of time for 0 ≤ t ≤ 4T . 

e) Make a graph of the trajectory of the electron in the real (x,y) space.  Explain the phenomena. 
f) We discussed in class that electrons in typical semiconductors do not exhibit Bloch oscillations 

because the BZ edge is too far in k-space; electrons scatter before they make it to the BZ edge.  
Can you suggest a way around this problem?   
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