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Departments of ECE and MSE, Cornell University 
 

ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures 
 

Spring 2015 
 

Homework 6      Due on April 9, 2015 at 5:00 PM 
 
 

Suggested Readings:  
a) Lecture notes 
b) START EARLY – THIS IS A CHALLENGING HOMEWORK SET 

 
Problem 6.1 (Green’s functions for exact Kronig-Penney bandstructure) 
In class, we discussed why the bandstructure problem in the Kronig-Penney model crystal of lattice 
constant a

 

and Dirac-delta potential strength S  can be written very compactly in terms of the Green’s 
function matrix G(E)  of the system as Trace[G(E)] = a / S .  Apply this technique to solve for the 
bandstructure E(k)  of a 1D crystal with a lattice constant a =0.3 nm and an attractive Dirac-delta 
strength at each lattice point S = -1 eV.nm.  In your sum over reciprocal lattice vectors Gn = n ⋅(2π / a)  in 
the Trace, restrict the sum to −5 ≤ n ≤ +5 .   

a) Plot the bandstructure E(k)  for the 1st Brillouin Zone up to the 4th band and superpose on the 
nearly free-electron E(k) .  Energy should be in eV, and k in units of 2π / a .  Indicate the allowed 
electron energy bands and gaps.  

Now we will fill up the bands with electrons for two ‘semiconductors’: 
b) Semiconductor A is made of atoms from the top of the periodic table, which have ‘few’ electrons. 

The atomic basis at each lattice site contributes exactly 4 electrons.  What is the energy bandgap?  
Is the fundamental gap at the Τ − point (k=0) or at the 1st Brillouin Zone edge k = ±(π / a) ? 

c) Semiconductor B on the other hand is made from atoms at the bottom of the periodic table, which 
have much more electrons.  Each lattice site contributes exactly 6 electrons.  What is the energy 
bandgap and is the fundamental gap at the Τ − point or at the 1st BZ edge? 

d) Based on the above, compare the conduction band edge and valence band edge effective masses 
of Semiconductors A and B.  First, compare qualitatively and predict whether the effective 
masses are larger or smaller than that of a free electron.  Then estimate the effective masses from 
your calculated Kronig-Penney bandstructure.  Based on what you observe, project a qualitative 
trend of effective masses for Group-IV semiconductors: Diamond (C), Silicon (Si), and 
Germanium (Ge) - and check your projected trend with experimental effective masses. 

 
Problem 6.2 (Effective mass tensor and density of states effective mass – the 
general case) 
 
A solid has only one conduction band minimum at the Γ-point with an effective mass tensor given by: 
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The total electron density in the conduction band can be written as (assuming the Maxwell Boltzmann 
approximation) 
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And em  is the density of states effective mass for the conduction band. Show that: 

( )[ ] 31det Mme = .  
Hint: This problem does not require any significant amount of algebra.  
 
 
Problem 6.3 (Constant energy surfaces) 
Consider a material with energy band dispersion given by: 
 
 
a) Show that for an electron with wavevector k

!
 the velocity in real space given by ( )kvc

!!
 is always 

perpendicular to the constant energy surface that passes through k
!

.  
 
 
Problem 6.4 (Band electrons in magnetic fields) 
In homework 1 you looked at the problem of free electrons in a magnetic field. The electrons moved in 
circular orbits in real space with a frequency cω  which was called the electron-cyclotron frequency. For 
free electrons,  

m
eBo

c =ω  

In this problem, you will look at electrons in the conduction band of a solid. Suppose the energy band 
dispersion near the conduction band minimum is given by: 
 
 
 
The motion of each electron in k-space is described by the equation: 
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And in real space by the equation: 
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Needless the say, the motion of the electron is complicated both in k-space and in real space and the 
exploration of this motion is the purpose of this problem.  
 
a) Show that the component of the crystal momentum of an electron parallel to the magnetic field is 
independent of time. We will call this component ||k

!
.  

 
b) Show that the electron energy is independent of time.   
 
c) Argue from results in (a) and (b) imply that in k-space the orbit of an electron with initial energy oE  is 
given by the intersection of the constant energy surface corresponding to energy oE  with a plane that 

passes through the point ||k
!

 and is perpendicular to the direction of the magnetic field (or perpendicular 

to ||k
!

). This shows that the motion of the electron in k-space is periodic.  
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d) In real space, the electron motion is described by the position vector ( )tr! . The projection of the 

electron motion in a plane perpendicular to the magnetic field is given by ( )tr⊥
!

. Argue that, 
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e) The orbit of the electron in k-space is given by the time-dependent vector ( )tk
!

 and the projection of 

the electron orbit in real-space in a plane perpendicular to the magnetic field is given by ( )tr⊥
!

. Show that 
these two orbits are related by, 
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Hint: start by taking the vector cross-product of an equation on both sides by B
!

 and then integrating.  
The above relation shows that the projection of the motion of the electron in real space in a plane 
perpendicular to the magnetic field will be periodic since the motion in k-space is periodic (as shown in 
part (c) earlier).  
 

For parts (f) and (g) assume that the magnetic field is applied in the ẑ  direction and is given by zBB o ˆ=
!

. The inverse effective mass tensor is given by, 
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From part (e) it follows that the motion of the electrons in the x-y plane (and in k-space) is periodic and 
we suppose the period has a frequency cω .  
 
f) Find an expression for cω  in terms of the components of the inverse effective mass tensor.  
Hint: The answer can be written in terms of the determinant of a sub-matrix of the inverse effective mass 
matrix. And this is not supposed to be an algebra-intensive problem - if you do it elegantly.   
 
g) The frequency cω  can be written as in the free electron case, eoc meB=ω , where em  is now the 
cyclotron effective mass. Find an expression for the cyclotron effective mass. Note that the cyclotron 
effective mass depends on the direction in which the magnetic field has been applied.  
 

 

 

 

 

 

Fig: The orbit in k-space of an electron in case where the 
energy band dispersion is anisotropic, the constant 
energy surfaces are ellipsoids, and the magnetic field is 
applied in the z-direction. All electrons with initial 
crystal momentum component in the z-direction given 
by  and energy will have the orbit in k-space as 
shown.  
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NOTE: Measurement of cyclotron frequencies while applying the magnetic field in different 
directions is a commonly used and very effective experimental technique to determine the cyclotron 
effective masses and, from this knowledge, the effective mass tensor of a semiconductor.  
 
For part (h) assume that the inverse effective mass tensor is diagonal and given by, 
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The magnetic field is applied in the direction of the unit vector ( )zyx nnnn ,,ˆ =  and is given by, 

nBB o ˆ=
!

. This last part could be challenging so if you get stuck, move on.  
 
h) Show that now the cyclotron effective mass is given by the expression: 
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Hint: You might (or might not) want to use the result that, 
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Problem 6.5 (Effective masses, momentum matrix elements, and the bandgap) 
In lectures the following equation was derived for the periodic part of the Bloch function: 
 
 
 
Suppose the above equation has been solved for a particular point k

!
in the k-space and all band energies

( )kEn
!

 and corresponding functions ( )ru kn
!!

,  have been obtained. Now we consider a close by point  

kk
!!

Δ+  in k-space. The Hamiltonian is, 
  
 
 
As in the lecture notes, we will treat kH

!ˆΔ  as a small perturbation, and expand the new eigenfunction 
( )ru kkn
!!!

Δ+,  in terms of the old eigenfunctions in the following form (just as we do in ordinary 

perturbation theory), 
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As in the lecture notes, the first order correction to the energy is given by, 
  
 
The second order correction to the energy would then be given by the second order perturbation theory, 
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If one expands the LHS to the second order in k

!
Δ  one obtains (from Taylor series), 

 
 
 
 
If one collects all terms that are of first order in k

!
Δ on the RHS and then equates the corresponding terms 

on the LHS and RHS then one obtains (as in the lecture notes), 
 
 
 
which is the familiar relationship between the average velocity of the Bloch electron and the energy band 
gradient.  
 
a) Collect all terms that are of second order in k

!
Δ on the RHS and then prove the following expression 

for the effective mass,    
  
 
 
 
 
 
 
 
b) Consider a semiconductor with just two bands; a conduction 
band and a valence band with energy dispersions, 
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Show that the effective masses obey the relation: 
 
 
 
 
 
 
NOTE: This problem shows the important relationship between effective masses and momentum 
matrix elements between conduction and valence band Bloch states. It also shows that smaller 
bandgaps imply smaller effective masses and vice versa – something that we briefly mentioned in 
the lecture notes (see the plot in the lecture notes).  
 
 
Problem 6.6 (Conductivity tensor of germanium) 
 
In germanium conduction band, there are 8 half electron pockets, or 4 full electron pockets, in the FBZ. 
Assume that the total electron density in all pockets is n  and the scattering time isτ . Find the 
conductivity tensor of germanium and include contributions from all pockets.  
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Hint: To find the answer you will have to figure out the individual conductivity tensors for all the pockets 
separately in the un-rotated standard x,y,z co-ordinate system and then add them up. This can be tricky 
and simple symmetry considerations can help. We know that the inverse effective mass tensor for the 
pocket located at ( )aaa πππ ,,  is as given in the handout, 
 
 
 
 
 
 
And for this pocket, 
 
  
 
 
 
Assume 4 full pockets in the FBZ. Now suppose, I need to find the tensor for the pocket located at  
( )aaa πππ ,,−− . I argue that if I let xE  become xE−  and  yE  become yE−  then in the current 

density contributed from the pocket at ( )aaa πππ ,,−−  I should see xJ  become xJ−  and  yJ  

become yJ−  but zJ  should remain zJ  (these arguments follow from the symmetry of the two pockets 
with respect to  the xyz co-ordinate system). This can only happen if the inverse mass tensor for the 
pocket at  ( )aaa πππ ,,−−  is, 
 
 
 
 
 
 
You need to use similar symmetry arguments and find the conductivity (or inverse effective mass) tensors 
for all pockets and then add them up to find the conductivity tensor for germanium.  
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