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Departments of ECE and MSE, Cornell University 
 

ECE 4070/MSE 5470: Physics of Semiconductor and Nanostructures 
 

Spring 2015 
 

Homework 1      Due on Feb. 2, 2015 at 5:00 PM 
 
 

 
Suggested Readings:  
 
a) Revise Fourier transforms from your favorite book(s).  
b) Lecture notes 
c) Chapter 6 in Kittel (Introduction to Solid State Physics) 
 
Problem 1.1: (Drude Model: Motion in Magnetic Fields and the Hall Effect) 
 
In the lecture notes, we considered electron motion in electric fields. In this problem we will include the 
magnetic field as well. Consider the metallic sample shown below.  

 
 
The metal has an electron density equal to n , and electron scattering timeτ . A uniform magnetic field in 
the z-direction, given by zBB o ˆ=

!
, is applied to the sample. In addition a uniform electric field in the x-

direction, given by xE , is also applied by connecting the sample to an external voltage/current source via 
leads, as shown. In the presence of the fields, the force on the electrons is given by the Lorentz 
expression:  

( )BvEeF
!!!!

×+−=  
And the electron average velocity satisfies the equation: 

( )
τ
vmBvEe

dt
vdm

!!!!!
−×+−=  

 
a) Suppose the scattering rate is zero (i.e. ignore scattering). And also assume that xE  is zero. Now solve 
the equation given above and find ( )tv x  and ( )tv y , the components of the electron average velocity, 

assuming the initial conditions that ( ) Atv x == 0  and ( ) 00 ==tv y . Hint: It would be easiest to break 
the vector equation into its x and y components. And then you will get two coupled linear differential 
equations for the two components of the electron average velocity.   
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b) The components of the electron average displacement,  ( )tux  and ( )tuy  are related to the average 
velocities by the relations:  

( ) ( )tv
dt
tdu

x
x =            

( ) ( )tv
dt
tdu

y
y =  

Once you have obtained ( )tv x  and ( )tv y , integrate them once more, assuming the initial conditions that 

( ) ( ) 000 ==== tutu yx , to get the components of the electron average displacement. You will see that 
the electron motion is oscillatory with an angular frequency given by meBoc =ω . This frequency cω  
is called the electron cyclotron frequency. You will also find that the electron moves in a circular path. 
What is the radius of the electron orbit? Looking down on the sample from the top, is the electron motion 
clockwise or counter clockwise? 
 
c) Now assume that xE  is not zero. Repeat parts (a) and (b). Be very careful. The presence of xE  (a 
driving term) will require that you add a particular solution to the homogenous solution of the coupled 
differential equations found in parts (a) and (b). Once you have found a complete solution, plug it back 
into the coupled differential equations to make sure your solution satisfies the differential equations. You 
will find that the electron motion is helical. In addition to the circular motion, the electron moves with a 
uniform average velocity in a certain direction. What is this direction? Hint: Your intuition might deceive 
you here.  
 
d) Now assume that both xE  and yE  are not zero. Although there is no E-field applied in the y-
direction, you will see that a field in the y-direction must exist in the sample. Also assume that the 
scattering term is present. This is the most general and realistic situation. We will not attempt a full blown 
time-dependent solution, but try to find only the steady state solution. A well defined time-independent 
steady state solution will exist because of the damping introduced by the presence of the scattering term. 
In steady state, the left hand side of the equation,   

 ( )
τ
vmBvEe

dt
vdm

!!!!!
−×+−=  

will be zero. Find the time-independent components, xv  and yv , of the electron average velocity in 
steady state and relate them to the components of the electric and magnetic fields.  
 
e) Find the components, xJ  and yJ , of the electron current density in the x and y directions in steady 

state. You will find a non-zero value for yJ .  
 
f) Since the sample is finite in the y-direction, and is not connected by any leads on its sides, there cannot 
be steady state current flowing in the y-direction inside the sample. The only way to have 0=yJ  is to 

have a non-zero field yE  in the y-direction. From the condition 0=yJ , find the field yE  (magnitude 
and sign).   
 
g) A non-zero field in the y-direction can be measured experimentally by putting voltage probes on the 
two sides of the sample that are spaced apart by d in the figure. The ratio  xy JE  is called the Hall 

resistivity Hρ . Find Hρ  (magnitude and sign).  
 
Experimental Importance: The Hall resistivity is the easiest and the best way to measure the carrier 
density n  as well as the sign of the charge of the carriers. If the charge carriers are electrons (-vely 
charged) the Hall resistivity will come out negative (as you must have found out in part (g) above). If the 
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charge carriers are holes (+vely charged) then the Hall resistivity will come out positive (to see this, let e  
go to e−  in your expression for the Hall resistivity in part (g)).  
 
 
Problem 1.2: (Plasma frequency) 
 
a) In gold, the electron scattering time τ  is around 30 fs (or 151030 −×  sec). You can find the DC 
conductivity (or the DC resistivity, which is the inverse of conductivity) of gold from the website: 
http://www.webelements.com/. Find the carrier density n  of electrons in gold. Find the plasma frequency 
pω  of gold, convert it into Hertz, and then using the figure below find in which part of the 

electromagnetic radiation spectrum (i.e. am radio, infrared, etc) does it fall. Be careful that you don’t 
mix up the units.  
 

 
 
b) In a doped semiconductor, the electron density is 317 cm/110 . Assume the dielectric constant of the 

semiconductor to be εo. Find the plasma frequency pω  of this semiconductor, convert it into Hertz, and 
then using the figure below find in which part of the electromagnetic radiation spectrum (i.e. am radio, 
infrared, etc) does it fall. Be careful that you don’t mix up the units.  
 
 
Problem 1.3: (Basic Quantum Mechanics: Finite Basis Expansions) 
 
Consider a quantum system with the Hamiltonian operator oĤ . The Hamiltonian has two eigenstates 

1φ  and 2φ  with the same eigenenergies E , so that: 11ˆ φφ EHo =  and 22ˆ φφ EHo = . From 
here onwards I can state the problem to be solved in two different, but equivalent, ways. It is important 
that you understand that in both cases one is essentially solving exactly the same problem.  
 
First Statement: 
Suppose that a perturbing term 'Ĥ  is added to the Hamiltonian so that the new Hamiltonian Ĥ  is: 

'ˆˆˆ HHH o +=  

The matrix elements of the perturbing term 'Ĥ  are as follows:  
tHH == 2112 'ˆ'ˆ φφφφ  

Seek a trial solution for the eigenstate of Ĥ  which is a superposition of the eigenstates of oĤ :  
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2211 φφψ cc +=  
so that: 

ψψ EH =ˆ  

Plug in the trial solution, and find all possible eigenvalues E and the corresponding eigenstates ψ  of 

the Hamiltonian Ĥ .  
 
Second Statement:  
In the basis of the eigenstates, the Hamiltonian operator oĤ  is obviously diagonal and can be represented 
by the matrix:  

⎥
⎦

⎤
⎢
⎣

⎡
=

E
E

Ho 0
0ˆ  

And the two eigenstates can be represented by the two column vectors: ⎥
⎦

⎤
⎢
⎣

⎡
=
0
1

1φ  and ⎥
⎦

⎤
⎢
⎣

⎡
=
1
0

2φ . 

Suppose that a perturbing term is added to the Hamiltonian so that the new Hamiltonian Ĥ  in matrix 
form becomes: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+=

Et
tE

t
t

E
E

HHH o 0
0

0
0

'ˆˆˆ  

 
a) Find the exact eigenenergies, 1E  and 2E , of the new Hamiltonian Ĥ .  
 
b) Find the corresponding eigenstates, 1ψ  and 2ψ , of the new Hamiltonian Ĥ , in terms of the states 

1φ  and 2φ .  
 
 
Problem 1.4: (Basic Fourier Transforms) 
 
a) Consider a periodic function that consists of a train of delta functions of equal weights separated in 
time by T:  

( ) ( )∑ −=
∞

−∞=n
nTttf δ  

Find the Fourier transform ( )ωf  of ( )tf  and show that it also consists of a train of delta functions of equal 
weight in the frequency domain. If you don’t know how to do this problem then consult your favorite 
book on Fourier transforms.  
 
b) Consider the box function shown below: 

 
Find the Fourier transform ( )ωg  of ( )tg .  

t 

1 

W 
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c) Consider the periodic function shown below: 

 
Find the Fourier transform ( )ωh  of ( )th  and show that it consists of a train of delta functions with 
unequal weights. Hint: write ( )th  as a convolution of the functions in parts (a) and (b). Lesson: The 
Fourier transform of a periodic function consists of only certain discrete frequencies.  
 

d) Show that ( )th  in part (c) can be written as Fourier series: ( ) ∑=
∞

−∞=

−

n

t
T
ni

n ehth
π2

and find the 

coefficients nh . Hint: Use your results in part (c). Lesson: A periodic function can be expanded in a 
Fourier series.  
 
e) Consider the following function ( )zyxh ,,  in 3-dimenions. The function ( )zyxh ,,  is equal to unity 
inside a cube centered at the origin and of dimensions shown in the figure below, and is equal to zero 
outside the cube.  Find the Fourier transform ( )zyx kkkh ,,  of the function ( )zyxh ,, .  

 

t 

1 

W  

T 


