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Handout 9

Application of LCAO to Energy Bands in Solids and
the Tight Binding Method

In this lecture you will learn:

• An approach to energy bands in solids 
using LCAO and the tight binding method Energy
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Example: A 1D Crystal with 1 Orbital per Primitive Cell

Consider a 1D lattice of atoms:

a x

Each atom has the energy levels as 
shown

• The electrons in the lowest energy 
level(s) are well localized and do not take 
part in bonding with neighboring atoms

• The electrons in the outermost s-orbital 
participate in bonding
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Tight Binding Approach for a 1D Crystal
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We assume that the solution is of the LCAO form:     
m
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• If we have N atoms in the lattice, then our solution is made up of N different s-
orbitals that are sitting on the N atoms

• In principle one can take the assumed solution, as written above, plug it in the 
Schrodinger equation, get an NxN matrix and solve it (just as we did in the case of 
molecules). But one can do better ………..

Periodic potential

We know from Bloch’s theorem that the solution must satisfy the following:
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And assume that orbitals on different atoms are approx. orthogonal: 
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For the solution:

to satisfy: 

one must have the same value of              for all m (i.e. all coefficients must have the 
same weight). 

So we can write without loosing generality:
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For the solution:

to satisfy: 
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Consideration 2 (contd…):

Proof:

For the Bloch condition we get:
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So we can write the solution as:
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And we know that it is a Bloch function because:
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All that remains to be found is the energy of this solution – so we plug it into the 
Schrodinger equation:
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a x

Multiply this equation with                 and:
• keep the energy matrix elements for orbitals that are nearest neighbors and
• assume that the orbitals on different atoms are orthogonal
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Energy levels in an isolated atom
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• Number of quantum states at the ending 
point = 2 x energy levels per band for an 
N atom crystal = 2N

• Number of quantum states at the 
starting point = 2 x number of orbitals 
used in the LCAO solution = 2N

 Initial number of quantum states = 
Final number of quantum states

sEN :
ssV4

A band of N energy levels
2N quantum states

Tight Binding Approach for a 1D Crystal
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Tight Binding vs NFEA for a 1D Crystal
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LCAO – Tight Binding Nearly Free Electron Approach (NFEA) 
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Would have also 
obtained the higher 
energy bands in 
LCAO if higher 
energy atomic 
orbitals were also 
included in the 
LCAO solution
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Each atoms now has a s-orbital and a p-orbital that contributes to energy band 
formation
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We write the solution in the form:
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And plug it into the Schrodinger equation:
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Example: A 1D Crystal with 2 Orbitals per Primitive Cell

Verify that it satisfies:    reRr k
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Tight Binding Approach for a 1D Crystal

x
0

Multiply the equation with                 and:
• keep the energy matrix elements for orbitals that are nearest neighbors and
• assume that the orbitals on different atoms are orthogonal
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Multiply the equation with                 and:
• keep the energy matrix elements for orbitals that are nearest neighbors and
• assume that the orbitals on different atoms are orthogonal
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Step 1:

Step 2:

1amRm






7

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Tight Binding Approach for a 1D Crystal
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We can write the two equations in matrix form:

For each value of wavevector one obtains two 
eigenvalues – corresponding to two energy bands
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For                   we get: x
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