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Handout 7

Properties of Bloch States and Electron 
Statistics in Energy Bands

In this lecture you will learn:

• Properties of Bloch functions

• Periodic boundary conditions for Bloch 
functions

• Density of states in k-space

• Electron occupation statistics in energy 
bands
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Bloch Functions - Summary

• Electron energies and solutions are written as (     is restricted to the first BZ):

• The solutions satisfy the Bloch’s theorem:

and can be written as a superposition of plane waves, as shown below for 3D:

• Any lattice vector and reciprocal lattice vector can be written as:

• Volume of the direct lattice primitive cell and the reciprocal lattice first BZ are:
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Bloch Function – Product Form Expression
A Bloch function corresponding to the wavevector     and energy band “n” can 
always be written as superposition over plane waves in the form:
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The above expression can be re-written as follows:
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Allowed Wavevectors for Free-Electrons (Sommerfeld Model)
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The boundary conditions dictate that the allowed 
values of kx , ky , and kz, are such that:
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Bloch Functions – Periodic Boundary Conditions 

• Any vector       in the first BZ can be written as:k

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where 1 , 2 , and 3 range from -1/2 to +1/2:
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Bloch Functions – Periodic Boundary Conditions 

• Consider a 3D crystal made up of N1 primitive cells in the      direction, N2 primitive 
cells in the       direction and N3 primitive cells in the       direction
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Bloch Functions – Periodic Boundary Conditions 

The periodic boundary condition in the      direction implies:
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Bloch Functions – Periodic Boundary Conditions 
Similarly, the periodic boundary conditions in the      
directions of        and       imply:
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Since any k-vector in the FBZ is given as:

 there are N1 N2 N3 different allowed k-values 
in the FBZ 

 There are as many different allowed k-values 
in the FBZ as the number of primitive cells in 
the crystal
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Density of States in k-Space
Reciprocal lattice for a 2D lattice
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Question: Since       is allowed to have only 
discrete values, how many allowed k-values 
are there per unit volume of the k-space? 
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• In this volume, there are N1 N2 N3
allowed k-values 

• The number of allowed k-values per unit 
volume in k-space are:
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where V is the volume of the crystal

3D Case:
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Density of States in k-Space
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• In the first BZ, there are N1 allowed k-values 
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• In the first BZ, there are N1N2 allowed k-values 
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States in k-Space and Number of Primitive Cells
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• In the first BZ, there are N1 allowed k-values 
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length in k-space are:
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Reciprocal lattice is:

There are N1 allowed k-values in k-space
There are N1 allowed k-values per energy band
There are as many allowed k-values per energy band as the 
number of primitive cells in the entire crystal 
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States in k-Space and Number of Primitive Cells
2D Case:
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Reciprocal lattice is:

• In the first BZ, there are N1N2 allowed k-values 

There are N1N2 allowed k-values per energy band

There are as many allowed k-values per energy band as the number 
of primitive cells in the entire crystal 
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Statistics of Electrons in Energy Bands
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1D Case:

The number of allowed k-values per unit length in k-
space is  L / 2therefore:

Suppose I want to find the total number of electrons in the 
n-th band – how should I find it?

The probability that the quantum state of wavevector     is 
in the n-th energy band is occupied by an electron is given 
by the Fermi-Dirac distribution:
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Then the total number N of electrons in the n-th band must 
equal the following sum over all the allowed values in k-
space in the first BZ:
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2D Case:

The number of allowed k-values per unit area 
in k-space is:
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Therefore:

Need to find the total number of electrons in the n-th band

3D Case:

The number of allowed k-values per unit volume in k-space is:
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Statistics of Electrons in Energy Bands
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Band Filling at T0K for a 1D lattice
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Question: suppose we have 2 electrons per primitive 
cell. How will the bands fill up at T0K? Where will be 
the Fermi level?

2 electrons per primitive cell 
 2N1 total number of electrons

Number of k-values per band = N1
Number of quantum states per band = 2xN1

spin
 First band will be completely filled. All higher 
bands will be empty

Question: Suppose we have 3 electrons per primitive 
cell. How will the bands fill up at T0K? 

3 electrons per primitive cell 
 3N1 total number of electrons

 First band will be completely filled. Second band 
will be half filled. All higher bands will be empty

Ef for 3 electrons 
per primitive cell

Ef for 2 electrons 
per primitive cell

Ef for 4 electrons 
per primitive cell

Suppose the number of primitive cells = N1
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Band Filling at T0K for a 2D lattice

Question: suppose we have 2 electrons per primitive 
cell. How will the bands fill up at T0K? Where will be 
the Fermi level?

2 electrons per primitive cell 
 2N1N2 total number of electrons

Number of k-values per band = N1N2
Number of quantum states per band = 2xN1N2

spin
 First band will be completely filled. All higher 
bands will be empty

Suppose the number of primitive cells = N1N2

Important lesson:
In an energy band (whether in 1D, 2D or 3D) the total number of quantum states 
available is twice the number of primitive cells in the direct lattice. How the bands 
get filled depends on the number of electrons per primitive cell.
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Fermi Surfaces (3D) and Contours (2D) in Solids
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Fermi circle for a free electron gas 
in 2D

What happens in solids when the 
energy bands are more complex? 
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First energy band of 
a 2D lattice
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Fermi contours for 
different electron 
densities corresponding 
to the energy band 
shown on the left 
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First energy band of 
a 2D lattice
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Fermi Surfaces (3D) and Contours (2D) in Solids

FBZ
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Fermi Surfaces (3D) and Contours (2D) in Solids

Fermi surface of a simple cubic 
direct lattice shown inside the 
first BZ

Fermi surface of a FCC lattice 
shown inside the first BZ (the 
figure shows the Fermi surface 
of Copper)
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Band Filling at T0K for Silicon

Electron Configuration: 1s2 2s2 2p6 3s2 3p2

Atomic number: 14

• The electrons in the outermost shell can 
move from atom to atom in the lattice – they 
are not confined to any individual atom. 
Their energies are described by the energy 
bands

• The electrons in the inner shells remain 
confined to individual atoms

Number of electrons in the outermost shell: 4

Silicon:

• Silicon lattice is FCC

• There are 2 Silicon atoms per 
primitive cell (2 basis atoms)

 There are 4 electrons contributed 
by each Silicon atom and so there are 
8 electrons per primitive cell that are 
available to fill the energy bands



11

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

2

2

1

1

1

1

Band Filling at T0K for Silicon
• There are 8 electrons per unit cell available to fill the energy bands

• Recall that in each energy band the number of states available is twice the 
number of primitive cells in the crystal

• In Silicon, the lowest 4 energy bands will get completely filled at T0K and all the 
higher energy bands will be empty

Ef

1

1

1

1

FBZ (for FCC lattice)
Silicon Energy Bands
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2

2

1

1

1

1

Ef

1

1

1

1

FBZ (for FCC lattice)
Silicon Energy Bands

Valence 
band

Conduction 
band

Energy Bands in Silicon
• The highest filled energy band is called the valence band. In silicon the valence 
band is double degenerate at most points in the first BZ
• The lowest empty energy band is called the conduction band
• In energy, the valence band maximum and the conduction band minimum need 
not happen at the same point in k-space (as is the case in Silicon)
• The lowest energy of the conduction band is called Ec and the highest energy of 
the valence band is called Ev
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