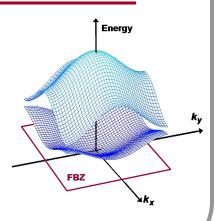
Handout 7

Properties of Bloch States and Electron Statistics in Energy Bands

In this lecture you will learn:

- Properties of Bloch functions
- Periodic boundary conditions for Bloch functions
- · Density of states in k-space
- Electron occupation statistics in energy bands



ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Bloch Functions - Summary

• Electron energies and solutions are written as (\vec{k} is restricted to the first BZ):

$$\psi_{n,\vec{k}}(\vec{r})$$
 and $E_n(\vec{k})$

• The solutions satisfy the Bloch's theorem:

$$\psi_{n,\vec{k}}(\vec{r}+\vec{R})=e^{i\,\vec{k}\cdot\vec{R}}\,\psi_{n,\vec{k}}(\vec{r})$$

and can be written as a superposition of plane waves, as shown below for 3D:

$$\psi_{n,\vec{k}}(\vec{r}) = \sum_{j} c_n (\vec{k} + \vec{G}_j) \sqrt{\frac{1}{V}} e^{i(\vec{k} + \vec{G}_j) \cdot \vec{r}}$$

• Any lattice vector and reciprocal lattice vector can be written as:

$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$
 $\vec{G} = m_1 \vec{b}_1 + m_2 \vec{b}_2 + m_3 \vec{b}_3$

• Volume of the direct lattice primitive cell and the reciprocal lattice first BZ are:

$$\Omega_3 = \left| \; \vec{a}_1 \cdot \left(\vec{a}_2 \times \vec{a}_3 \right) \right| \qquad \qquad \Pi_3 = \left| \; \vec{b}_1 \cdot \left(\vec{b}_2 \times \vec{b}_3 \right) \right|$$

Bloch Function - Product Form Expression

A Bloch function corresponding to the wavevector \vec{k} and energy band "n" can always be written as superposition over plane waves in the form:

$$\psi_{n,\vec{k}}(\vec{r}) = \sum_j c_n \Big(\vec{k} + \vec{G}_j\Big) \sqrt{\frac{1}{V}} \; \mathrm{e}^{i \, \big(\vec{k} + \vec{G}_j\big). \, \vec{r}}$$
 The above expression can be re-written as follows:

$$\psi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \sum_{j} c_{n} (\vec{k} + \vec{G}_{j}) \sqrt{\frac{1}{V}} e^{i\vec{G}_{j}\cdot\vec{r}}$$

$$= \sqrt{\frac{1}{V}} e^{i\vec{k}\cdot\vec{r}} \sum_{j} c_{n,\vec{k}} (\vec{G}_{j}) e^{i\vec{G}_{j}\cdot\vec{r}}$$

$$= \sqrt{\frac{1}{V}} e^{i\vec{k}\cdot\vec{r}} u_{n,\vec{k}} (\vec{r})$$

Where the function
$$u_{n,\bar{k}}(\bar{r})$$
 is lattice periodic:
$$u_{n,\bar{k}}(\bar{r}+\bar{R}) = \sum_{j} c_{n,\bar{k}}(\bar{G}_{j}) e^{i\,\bar{G}_{j}\cdot(\bar{r}+\bar{R})} = \sum_{j} c_{n,\bar{k}}(\bar{G}_{j}) e^{i\,\bar{G}_{j}\cdot\bar{r}} = u_{n,\bar{k}}(\bar{r})$$

Note that: $\psi_{n,\bar{k}}(\vec{r}) = \sqrt{\frac{1}{V}} e^{i\,\vec{k}\cdot\vec{r}} u_{n,\bar{k}}(\vec{r})$ satisfies
Bloch's theorem $= e^{i\,\vec{k}\cdot\vec{R}} \psi_{n,\bar{k}}(\vec{r}+\vec{R})$

Allowed Wavevectors for Free-Electrons (Sommerfeld Model)

We used periodic boundary conditions:

$$\psi(x + L_x, y, z) = \psi(x, y, z)$$

$$\psi(x, y + L_y, z) = \psi(x, y, z)$$

$$\psi(x,y,z+L_z)=\psi(x,y,z)$$

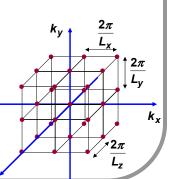
The boundary conditions dictate that the allowed values of k_x , k_y , and k_z , are such that:

$$e^{i(k_x L_x)} = 1 \qquad \Rightarrow \qquad k_x = n \frac{2\pi}{L_x} \qquad n = 0, \pm 1, \pm 2, \dots$$

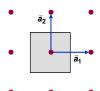
$$e^{i(k_y L_y)} = 1 \qquad \Rightarrow \qquad k_y = m \frac{2\pi}{L_y} \qquad m = 0, \pm 1, \pm 2, \dots$$

$$e^{i(k_z L_z)} = 1 \qquad \Rightarrow \qquad k_z = p \frac{2\pi}{L_z} \qquad p = 0, \pm 1, \pm 2, \dots$$

 \Rightarrow There are $\frac{V}{(2\pi)^3}$ grid points per unit volume of k-space



Bloch Functions - Periodic Boundary Conditions



Direct lattice

Reciprocal lattice for a 2D

• Any vector \vec{k} in the first BZ can be written as:

$$\vec{k} = \alpha_1 \ \vec{b}_1 + \alpha_2 \ \vec{b}_2 + \alpha_3 \ \vec{b}_3$$

where α_1 , α_2 , and α_3 range from -1/2 to +1/2:

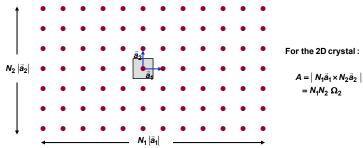
$$-\frac{1}{2} < \alpha_1 \le \frac{1}{2}$$

$$-\frac{1}{2} < \alpha_2 \le \frac{1}{2}$$

$$-\frac{1}{2} < \alpha_1 \le \frac{1}{2}$$
 $-\frac{1}{2} < \alpha_2 \le \frac{1}{2}$ $-\frac{1}{2} < \alpha_3 \le \frac{1}{2}$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Bloch Functions – Periodic Boundary Conditions



- Consider a 3D crystal made up of N_1 primitive cells in the \vec{a}_1 direction, N_2 primitive cells in the \vec{a}_2 direction and N_3 primitive cells in the \vec{a}_3 direction
- \Rightarrow Volume of the entire crystal is: $V = |N_1 \vec{a}_1 \cdot (N_2 \vec{a}_2 \times N_3 \vec{a}_3)| = N_1 N_2 N_3 \Omega_3$

Assuming periodic boundary conditions in all three directions we must have:

$$\psi(\vec{r} + N_1 \vec{a}_1) = e^{i \vec{k} \cdot N_1 \vec{a}_1} \psi(\vec{r}) = \psi(\vec{r})$$

$$\psi(\vec{r} + N_2 \vec{a}_2) = e^{i \vec{k} \cdot N_2 \vec{a}_2} \psi(\vec{r}) = \psi(\vec{r})$$

$$\psi(\vec{r} + N_3 \vec{a}_3) = e^{i \vec{k} \cdot N_3 \vec{a}_3} \psi(\vec{r}) = \psi(\vec{r})$$

Bloch Functions - Periodic Boundary Conditions

The periodic boundary condition in the \vec{a}_1 direction implies:

$$\Rightarrow e^{i \vec{k} \cdot N_1 \vec{a}_1} = 1 \qquad \left\{ \vec{k} = \alpha_1 \vec{b}_1 + \alpha_2 \vec{b}_2 + \alpha_3 \vec{b}_3 \right.$$

$$\Rightarrow \vec{k} \cdot N_1 \vec{a}_1 = 2\pi m_1 \qquad \left\{ m_1 \text{ is an integer} \right.$$

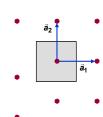
$$\Rightarrow 2\pi \alpha_1 N_1 = 2\pi m_1 \qquad \left\{ \text{recall that } : \vec{a}_j \cdot \vec{b}_k = 2\pi \delta_{jk} \right.$$

$$\Rightarrow \alpha_1 m_1 \qquad \left. \text{The equation of } \vec{b}_1 + \alpha_2 \vec{b}_2 + \alpha_3 \vec{b}_3 \right.$$

Reciprocal lattice for a 2D

Since:
$$-\frac{1}{2} < \alpha_1 \le \frac{1}{2}$$
 \Rightarrow $-\frac{N_1}{2} < m_1 \le \frac{N_1}{2}$

 $\Rightarrow m_1$ can have N_1 different integral values between $-N_1/2$ and $+N_1/2$



Direct lattice

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Bloch Functions - Periodic Boundary Conditions

Similarly, the periodic boundary conditions in the directions of \vec{a}_2 and \vec{a}_3 imply:

$$\rightarrow 0^{i\bar{K} \cdot N_2 \bar{a}_2} - 1$$
 & $0^{i\bar{K} \cdot N_3 \bar{a}_3} - 1$

$$\vec{k} \cdot N_2 \vec{a}_2 = 2\pi m_2$$

$$\vec{k}$$
 . N_3 $\vec{a}_3 = 2\pi m_3$

$$\Rightarrow \alpha_2 = \frac{m_2}{N_2} \qquad \& \qquad \alpha_3 = \frac{m_3}{N_3}$$

$$\Rightarrow e^{i \vec{k} \cdot N_2 \vec{a}_2} = 1 \qquad \& \qquad e^{i \vec{k} \cdot N_3 \vec{a}_3} = 1$$

$$\Rightarrow \vec{k} \cdot N_2 \vec{a}_2 = 2\pi m_2 \qquad \& \qquad \vec{k} \cdot N_3 \vec{a}_3 = 2\pi m_3$$

$$\Rightarrow \alpha_2 = \frac{m_2}{N_2} \qquad \& \qquad \alpha_3 = \frac{m_3}{N_3}$$

$$\Rightarrow -\frac{N_2}{2} < m_2 \le \frac{N_2}{2} \qquad \& \qquad -\frac{N_3}{2} < m_3 \le \frac{N_3}{2}$$

- \Rightarrow m_1 can have N_1 different integral values
- $\Rightarrow m_2$ can have N_2 different integral values $\Rightarrow m_3$ can have N_3 different integral values

Since any k-vector in the FBZ is given as:

$$\vec{k} = \alpha_1 \vec{b}_1 + \alpha_2 \vec{b}_2 + \alpha_3 \vec{b}_3$$

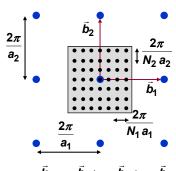
- \Rightarrow there are $N_1 N_2 N_3$ different allowed k-values in the FBZ
- ⇒ There are as many different allowed k-values in the FBZ as the number of primitive cells in the crystal

Reciprocal lattice for a 2D lattice

Direct lattice

Density of States in k-Space

Reciprocal lattice for a 2D lattice



$$\vec{k} = \alpha_1 \ \vec{b}_1 + \alpha_2 \ \vec{b}_2 + \alpha_3 \ \vec{b}_3$$

$$\alpha_1 = \frac{m_1}{N_1} \qquad \left\{ -\frac{N_1}{2} < m_1 \le \frac{N_1}{2} \right\}$$

$$\alpha_2 = \frac{m_2}{N_2} \qquad \left\{ -\frac{N_2}{2} < m_2 \le \frac{N_2}{2} \right\}$$

$$\alpha_3 = \frac{m_3}{N_2} \qquad \left\{ -\frac{N_3}{2} < n \right\}$$

Question: Since \vec{k} is allowed to have only discrete values, how many allowed k-values are there per unit volume of the k-space?

3D Case:

Volume of the first BZ is:

$$\Pi_3 = \left| \vec{b}_1 \cdot \left(\vec{b}_2 \times \vec{b}_3 \right) \right|$$

- In this volume, there are $N_1 N_2 N_3$ allowed k-values
- The number of allowed k-values per unit volume in k-space are:

$$= \frac{N_1 N_2 N_3}{\Pi_3}$$

$$= N_1 N_2 N_3 \frac{\Omega_3}{(2\pi)^3}$$

$$= \frac{V}{(2\pi)^3}$$

where V is the volume of the crystal

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Density of States in k-Space

Length of the crystal: $L = N_1 \mid \vec{a}_1 \mid = N_1 \Omega_1$

Length of the first BZ is: $\Pi_1 = \left| \ \vec{b}_1 \ \right| = \frac{2\pi}{\Omega_1}$

- In the first BZ, there are N₁ allowed k-values
- The number of allowed k-values per unit length in k-space are:

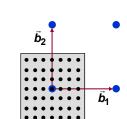
$$= \frac{N_1}{\Pi_1} = N_1 \frac{\Omega_1}{(2\pi)^1} = \frac{L}{(2\pi)}$$

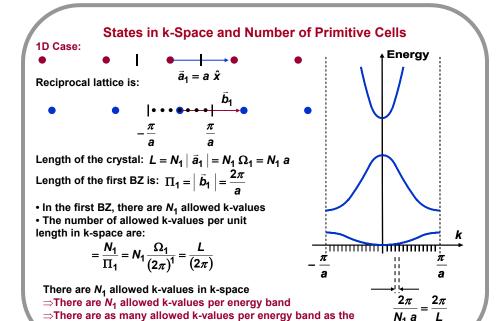
Area of the crystal: $A = |N_1 \vec{a}_1 \times N_2 \vec{a}_2| = N_1 N_2 \Omega_2$

Area of the first BZ is: $\Pi_2 = \left| \vec{b}_1 \times \vec{b}_2 \right| = \frac{(2\pi)^2}{\Omega_2}$

- In the first BZ, there are N_1N_2 allowed k-values
- The number of allowed k-values per unit area in k-space are:

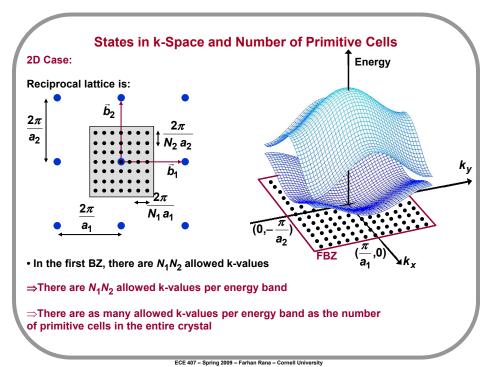
$$= \frac{N_1 N_2}{\Pi_2} = N_1 N_2 \frac{\Omega_2}{(2\pi)^2} = \frac{A}{(2\pi)^2}$$





ECE 407 - Spring 2009 - Farhan Rana - Cornell University

number of primitive cells in the entire crystal



Statistics of Electrons in Energy Bands

Suppose I want to find the total number of electrons in the n-th band – how should I find it?

The probability that the quantum state of wavevector \vec{k} is in the n-th energy band is occupied by an electron is given by the Fermi-Dirac distribution:

$$f_n(\vec{k}) = \frac{1}{1 + e^{(E_n(\vec{k}) - E_f)/KT}}$$

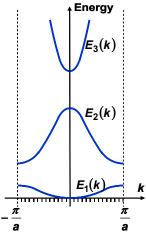
Then the total number $\it N$ of electrons in the n-th band must equal the following sum over all the allowed values in k-space in the first BZ:

$$N = 2 \times \sum_{\text{all } \vec{k} \text{ in FBZ}} f_n(\vec{k})$$

1D Case:

The number of allowed k-values per unit length in k-space is $L/2\pi$, therefore:

$$\Rightarrow N = 2 \times \sum_{\text{all } \bar{k} \text{ in FBZ}} f_n(k) = 2 \times L \int_{-\pi/a}^{\pi/a} \frac{dk}{2\pi} f_n(k)$$



Energy

FBZ

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Statistics of Electrons in Energy Bands

Need to find the total number of electrons in the n-th band

$$N = 2 \times \sum_{\text{all } \vec{k} \text{ in FBZ}} f_n(\vec{k})$$

2D Case:

The number of allowed k-values per unit area in k-space is:

 $\frac{A}{(2\pi)^2}$

Therefore:

$$N = 2 \times \sum_{\text{all } \vec{k} \text{ in FBZ}} f_n(\vec{k}) = 2 \times A \int_{FBZ} \frac{d^2 \vec{k}}{(2\pi)^2} f_n(\vec{k})$$

3D Case:

The number of allowed k-values per unit volume in k-space is: $\frac{V}{(2\pi)^3}$

Therefore:

$$N = 2 \times \sum_{\text{all } \bar{k} \text{ in FBZ}} f_n(\bar{k}) = 2 \times V \int_{FBZ} \frac{d^3 \bar{k}}{(2\pi)^3} f_n(\bar{k})$$

Band Filling at T≈0K for a 1D lattice

Suppose the number of primitive cells = N_4

Question: suppose we have 2 electrons per primitive cell. How will the bands fill up at *T*≈0K? Where will be the Fermi level?

2 electrons per primitive cell $\Rightarrow 2N_1$ total number of electrons

Number of k-values per band = N_1 Number of quantum states per band = $2xN_1$

spin/

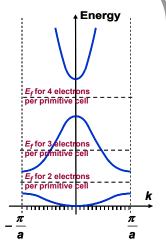
⇒ First band will be completely filled. All higher bands will be empty

Question: Suppose we have 3 electrons per primitive cell. How will the bands fill up at *T*≈0K?

3 electrons per primitive cell

 \Rightarrow 3N₁ total number of electrons

⇒ First band will be completely filled. Second band will be half filled. All higher bands will be empty



ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Suppose the number of primitive cells = N_1N_2

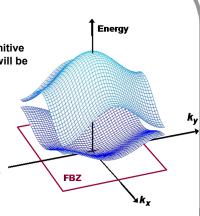
Question: suppose we have 2 electrons per primitive cell. How will the bands fill up at *T*≈0K? Where will be the Fermi level?

2 electrons per primitive cell

 $\Rightarrow 2N_1N_2$ total number of electrons

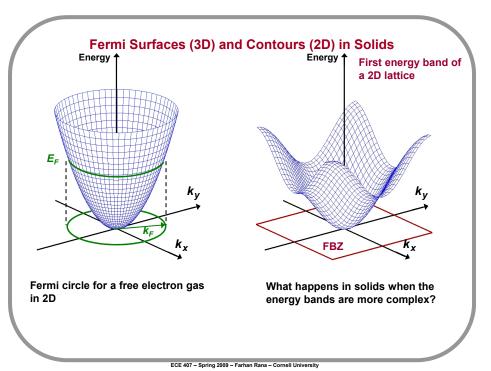
Number of k-values per band = N_1N_2 Number of quantum states per band = $2xN_1N_2$ spin /

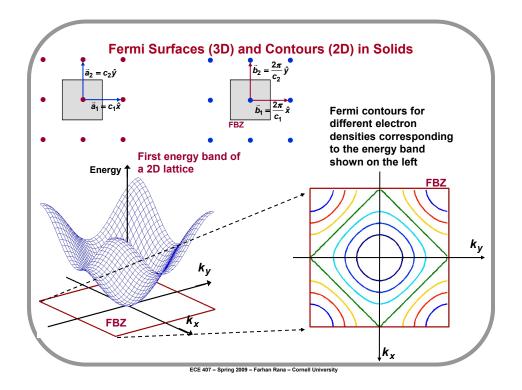
⇒ First band will be completely filled. All higher bands will be empty



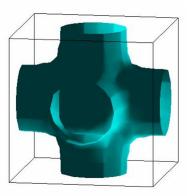
Important lesson:

In an energy band (whether in 1D, 2D or 3D) the total number of quantum states available is twice the number of primitive cells in the direct lattice. How the bands get filled depends on the number of electrons per primitive cell.

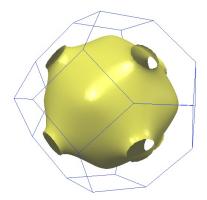




Fermi Surfaces (3D) and Contours (2D) in Solids



Fermi surface of a simple cubic direct lattice shown inside the first BZ



Fermi surface of a FCC lattice shown inside the first BZ (the figure shows the Fermi surface of Copper)

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Band Filling at T≈0K for Silicon

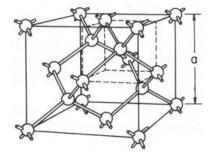
Silicon:

Atomic number: 14

Electron Configuration: 1s² 2s²2p⁶ (3s² 3p²)

Number of electrons in the outermost shell: 4

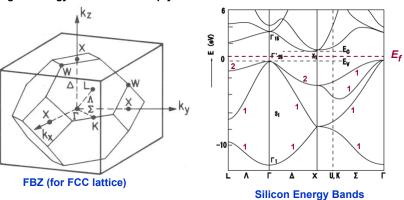
- The electrons in the outermost shell can move from atom to atom in the lattice – they are not confined to any individual atom.
 Their energies are described by the energy bands
- The electrons in the inner shells remain confined to individual atoms



- Silicon lattice is FCC
- There are 2 Silicon atoms per primitive cell (2 basis atoms)
- ⇒ There are 4 electrons contributed by each Silicon atom and so there are 8 electrons per primitive cell that are available to fill the energy bands

Band Filling at T≈0K for Silicon

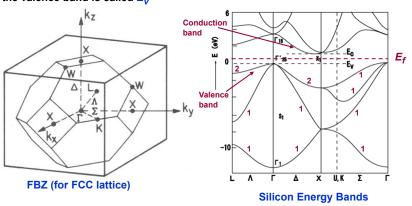
- There are 8 electrons per unit cell available to fill the energy bands
- Recall that in each energy band the number of states available is twice the number of primitive cells in the crystal
- In Silicon, the lowest 4 energy bands will get completely filled at $T \approx 0 K$ and all the higher energy bands will be empty



ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Energy Bands in Silicon

- The highest filled energy band is called the valence band. In silicon the valence band is double degenerate at most points in the first BZ
- The lowest empty energy band is called the conduction band
- In energy, the valence band maximum and the conduction band minimum need not happen at the same point in k-space (as is the case in Silicon)
- The lowest energy of the conduction band is called E_c and the highest energy of the valence band is called E_v



ECE 407 - Spring 2009 - Farhan Rana - Cornell University

