Review Handout

Time Independent Perturbation Theory in Quantum Mechanics

In this lecture you will learn:

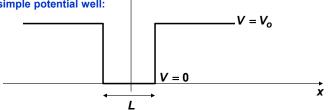
• First and Second Order Time Independent Perturbation Theory in Quantum Mechanics

Werner Heisenberg (1901-1976)

ECE 4070 - Spring 2010 - Farhan Rana - Cornell University

Motivation: A Potential Well Problem

Consider a simple potential well:



Suppose one has found all the eigenvalues and the eigenstates by solving the Schrodinger equation:

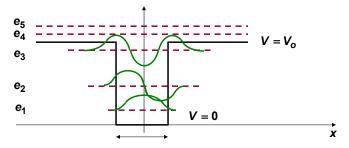
$$-\frac{\hbar^2}{2m}\nabla^2\phi(x)+V(x)\phi(x)=E\ \phi(x)$$

The eigenenergies are labeled as: e_n { n = 1,2,3,...

The corresponding eigenstates are: $\phi_n(x)$ or $|\phi_n\rangle$ { $n=1,2,3,\ldots$

Motivation: A Potential Well Problem

Eigenstates of a simple potential well are as depicted below:



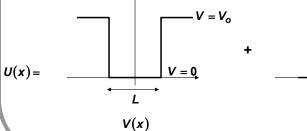
The eigenenergies are labeled as: e_n { n = 1,2,3,....

The corresponding eigenstates are: $\phi_n(x)$ or $|\phi_n\rangle$ $\{n=1,2,3,\ldots$

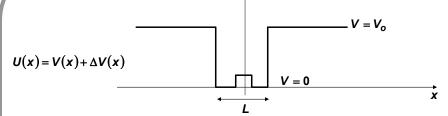
ECE 4070 - Spring 2010 - Farhan Rana - Cornell University

Motivation: Addition of a Small Perturbation

Now assume that a small perturbation is introduced in the potential: $V = V_0$ $U(x) = V(x) + \Delta V(x)$ V = 0



Motivation: Statement of the Problem



How do we find the eigenstates and eigenenergies for the new potential U(x)?

$$-\frac{\hbar^2}{2m}\nabla^2\psi(x)+U(x)\psi(x)=E\,\psi(x)$$

Option: Start from scratch again and solve the Schrodinger equation to get:

The new eigenenergies, labeled as: E_n

 $\{ n = 1,2,3,.....$

and the corresponding eigenstates: $\psi_n(x)$ or $|\psi_n\rangle$ { $n=1,2,3,\ldots$

uckily, another simpler option is available

ECE 4070 - Spring 2010 - Farhan Rana - Cornell University

Time Independent Perturbation Theory

Lets generalize the potential well problem a little

Suppose for a Hamiltonian \hat{H}_o we have solved the Schrodinger equation and obtained all the eigenenergies and eigenstates:

$$\hat{H}_{o}|\phi_{n}\rangle = e_{n}|\phi_{n}\rangle$$
 { $n = 1,2,3,....$ Orthonormality $\rightarrow \langle \phi_{n}|\phi_{p}\rangle = \delta_{np}$

We now want to obtain the eigenenergies and the eigenstates for the new hamiltonian \hat{H} where \hat{H} has an added small perturbation,

$$\hat{H} = \hat{H}_{o} + \Delta \hat{H}$$
 $\hat{H} |\psi_{n}\rangle = E_{n} |\psi_{n}\rangle$ { $n = 1,2,3,....$

Basic Assumption: If $\Delta \hat{H}$ is not too large a perturbation, the new eigenenergies and eigenstates are likely close to the unperturbed values

Therefore assume:

$$|\psi_n\rangle = |\phi_n\rangle + \sum_{\substack{m \neq n \ \text{Some small correction}}} \Delta c_m^n |\phi_m\rangle$$

 $E_n = e_n + \Delta e_n$ Some small correction

Main idea: Use the old eigenstates to construct the new eigenstates

First Order Perturbation Theory

A Note on the Correction Terms:

$$E_n = \mathbf{e}_n + \Delta \mathbf{e}_n$$

$$|\psi_n\rangle = |\phi_n\rangle + \sum_{m \neq n} \Delta \mathbf{c}_m^n |\phi_m\rangle$$
Correction

We expect that the correction terms can be expended in a series where each successive term is proportional to a higher power of $\Delta \hat{H}$. After all, the corrections should approach zero as the perturbation is made smaller, i.e. as $\Delta \hat{H} \rightarrow 0$

First Order Corrections to the Eigenenergies:

Take the expressions:
$$|\psi_n\rangle = |\phi_n\rangle + \sum\limits_{m \neq n} \Delta c_m^n |\phi_m\rangle$$
 $E_n = e_n + \Delta e_n$

Plug them into the Schrodinger equation:
$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$$

And multiply both sides from the left by the bra: $\langle \phi_n |$

$$\langle \phi_n | (\hat{H}_o + \Delta \hat{H}) (|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle) = \langle \phi_n | (e_n + \Delta e_n) (|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle)$$

ECE 4070 - Spring 2010 - Farhan Rana - Cornell University

First Order Perturbation Theory

$$\langle \phi_n | (\hat{H}_o + \Delta \hat{H}) (|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle) = \langle \phi_n | (e_n + \Delta e_n) (|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle)$$

Note that the quantities Δc_m^n and Δe_n , if non-zero, are proportional to some power of $\Delta \hat{H}$ that is equal to or greater than unity

So, as a first order approximation, we keep only those terms in the equation above that are first order in the perturbation $\Delta \hat{H}$. This gives,

$$\Delta \mathbf{e}_{n} = \langle \phi_{n} | \Delta \hat{H} | \phi_{n} \rangle$$

As expected, the first order correction to the eigenenergy is proportional to $\Delta \hat{H}$

First Order Corrections to the Eigenstates:

Now take the expressions:
$$|\psi_n\rangle = |\phi_n\rangle + \sum\limits_{m \neq n} \Delta c_m^n |\phi_m\rangle$$
 $E_n = \mathbf{e}_n + \Delta \mathbf{e}_n$ Plug them into the Schrodinger equation: $\hat{H}|\psi_n\rangle = E_n |\psi_n\rangle$

And multiply both sides from the left by the bra: $\langle \phi_p | (p \neq n)$

$$\langle \phi_p | (\hat{H}_o + \Delta \hat{H}) (|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle) = \langle \phi_p | (e_n + \Delta e_n) (|\phi_n\rangle + \sum_{m \neq n} \Delta c_m^n |\phi_m\rangle)$$

First Order Perturbation Theory

$$\left\langle \phi_{p} \left| \left(\hat{H}_{o} + \Delta \hat{H} \right) \right(\left| \phi_{n} \right\rangle + \sum_{m \neq n} \Delta c_{m}^{n} \left| \phi_{m} \right\rangle \right) = \left\langle \phi_{p} \left| \left(\mathbf{e}_{n} + \Delta \mathbf{e}_{n} \right) \left(\left| \phi_{n} \right\rangle + \sum_{m \neq n} \Delta c_{m}^{n} \left| \phi_{m} \right\rangle \right) \right\rangle$$

Again, as a first order approximation, we keep only those terms in the equation above that are first order in the perturbation $\Delta \hat{H}$. This gives,

$$\Delta c_p^n = \frac{\left\langle \phi_p \left| \Delta \hat{H} \right| \phi_n \right\rangle}{e_n - e_p}$$

Summing up the results obtained thus far, we can write the new eigenstates and eigenenergies in the presence of the perturbation as follows,

$$E_n = \mathbf{e}_n + \langle \phi_n | \Delta \hat{H} | \phi_n \rangle$$
 + terms higher order in $\Delta \hat{H}$

$$|\psi_n\rangle = |\phi_n\rangle + \sum_{m \neq n} \frac{\langle \phi_m \, | \, \Delta \hat{H} \, |\phi_n\rangle}{e_n - e_m} |\phi_m\rangle + \text{terms higher order in } \Delta \hat{H}$$

Question: What if we want more accurate eiegenenergies and/or eigenstates?

Answer: One can obtain corrections to arbitrary large powers in $\Delta \hat{H}$

ECE 4070 - Spring 2010 - Farhan Rana - Cornell University

Second Order Perturbation Theory

For many interesting perturbations the first order correction term to the energy vanishes, i.e.: $\langle \phi_n | \Delta \hat{H} | \phi_n \rangle = 0$

For the above reason and/or also to obtain more accurate values of the eigenenergies, it is sometimes necessary to obtain corrections to the eigenenergies that are of second order in $\Delta\hat{H}$

Second Order Corrections to the Eigenenergies:

We take the expressions obtained that are accurate to first order in $\Delta \hat{H}$:

$$E_n = \mathbf{e}_n + \langle \phi_n | \Delta \hat{H} | \phi_n \rangle + \Delta \mathbf{e}_n$$

$$|\psi_{n}\rangle = |\phi_{n}\rangle + \sum_{m \neq n} \frac{\langle \phi_{m} | \Delta \hat{H} | \phi_{n} \rangle}{e_{n} - e_{m}} |\phi_{m}\rangle + \sum_{m \neq n} \Delta c_{m}^{n} |\phi_{m}\rangle$$

The terms containing Δc_m^n and Δe_n now represent second order corrections

We plug them into the Schrodinger equation: $\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$

And multiply both sides from the left by the bra: $\langle \phi_n |$

Second Order Perturbation Theory

$$\begin{split} \langle \phi_{n} | & (\hat{H}_{o} + \Delta \hat{H}) \bigg(|\phi_{n}\rangle + \sum_{m \neq n} \frac{\langle \phi_{m} | \Delta \hat{H} | \phi_{n} \rangle}{e_{n} - e_{m}} |\phi_{m}\rangle + \sum_{m \neq n} \Delta c_{m}^{n} |\phi_{m}\rangle \bigg) = \\ \langle \phi_{n} | & (e_{n} + \langle \phi_{n} | \Delta \hat{H} | \phi_{n}\rangle + \Delta e_{n} \bigg(|\phi_{n}\rangle + \sum_{m \neq n} \frac{\langle \phi_{m} | \Delta \hat{H} | \phi_{n}\rangle}{e_{n} - e_{m}} |\phi_{m}\rangle + \sum_{m \neq n} \Delta c_{m}^{n} |\phi_{m}\rangle \bigg) \end{split}$$

We keep only those terms in the equation above that are second order or first order in the perturbation $\Delta\hat{H}$. The terms first order in $\Delta\hat{H}$ cancel out (as they should since the solution we used was already accurate to the first order) and we get:

$$\Delta \mathbf{e}_n = \sum_{m \neq n} \frac{\left| \left\langle \phi_m \left| \Delta \hat{H} \right| \phi_n \right\rangle \right|^2}{\mathbf{e}_n - \mathbf{e}_m}$$

The expression for the eigenenergies accurate to second order in $\Delta\hat{H}$ is thus:

$$E_n = \mathbf{e}_n + \langle \phi_n | \Delta \hat{H} | \phi_n \rangle + \sum_{m \neq n} \frac{\left| \langle \phi_m | \Delta \hat{H} | \phi_n \rangle \right|^2}{\mathbf{e}_n - \mathbf{e}_m} + \text{terms of higher order in } \Delta \hat{H}$$