Handout 5

The Reciprocal Lattice

In this lecture you will learn:

* Fourier transforms of lattices
* The reciprocal lattice

¢ Brillouin Zones

» X-ray diffraction

* Fourier transforms of lattice periodic functions

—
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Fourier Transform (FT) of a 1D Lattice

Consider a 1D Bravais lattice:

l
° ® = — e ® °
aj=ax

Now consider a function consisting of a “lattice” of delta functions — in which a delta
function is placed at each lattice point:

f(x)%
~— 1 1 1+ t+ 1t 1T-—>

§1=a)‘; X
f(x)= ¥ 6(x—na)

nN=—w

The FT of this function is (as you found in your homework):

+o0 o ) - . .
flky)= [ dx ¥ &(x-na)e ' kx* = Ze'kX"a=2l 3 5(kx—m2?7r)

—00 n=-—oo n=-—o a m=—o

The FT of a train of delta functions is also a train of delta functions in k-space
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Reciprocal Lattice as FT of a 1D Lattice

f(x)
S ST SR ST ST S SR S g

FTis: f(k,()%1= 2z
—1 1 g 1t 1 1T 1T —>
by =% % kx

The reciprocal lattice is defined by the position of the delta-functions in the FT of
the actual lattice (also called the direct lattice)

Direct lattice (or the actual lattice):

>
14

Reciprocal lattice:

@ ® L >@ ® ® ® o —/
- 2 kx
b1=—x
—a
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Reciprocal Lattice of a 1D Lattice
For the 1D Bravais lattice,

® ® @ >® L ® ® L]
51 =ax
The position vector R,, of any lattice point is given by: Rn =na,

Flx)
—1 1 Lﬁ; t ot 0t ot
)= 5 s(¢-Rs) |

+oo 00 . . 0 .=
The FT of this functionis: (k)= [ dx ¥ 8(x—R,)e*xX = 3¢/ kRn
—0

n=—o n=—oo

The reciprocal lattice in k-space is defined by the set of all points for which the k-

vector satisfies, I
el K-Rn _

for ALL R,, of the direct lattice

o]
For the points in k-space belonging to the reciprocal lattice the summation Y e

ecomes very large! n=—o0

ik.Rp,
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Reciprocal Lattice of a 1D Lattice
For the 1D Bravais lattice,

[ @ @ >® @ @ @ L
aj=ax

The position vector f(’,, of any lattice point is given by: R’n =n 51

The reciprocal lattice in k-space is defined by the set of all points for which the k-

vector satisfies, Lo
el K-Rn _4

for ALL R,, of the direct lattice

For k to satisfy e’ ¥*Rn =1, it must be that for all R,;;

k.R, =2z x{integer }
= k, na =2z x{integer }

2z
=k, = m? { where m is any integer

Therefore, the reciprocal lattice is:

E—
® @ @ >® @ L 4 L 4 ® K
- 2r .
b1 =—X
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Reciprocal Lattice of a 2D Lattice
Consider the 2D rectangular Bravais lattice: Y Y
If we place a 2D delta function at each lattice PY PY
point we get the function: 3, =cCV
2=CY N
© L - I
f(x,y)= ¥ X d(x-na)s(y-mc) dj=ax x
N=—c0 M=—c0 ® ®

The above notation is too cumbersome, so we write it in a simpler way as:

f(f) = Z 52 (F - K’j) —— The summation over “j ” is over all the lattice points
J

A 2D delta function has the property: deF 52 (F — Fo) g(F) = g(i-o)
and it is just a product of two 1D delta functions corresponding to the x and y
components of the vectors in its arguments: §2 (f - fo) = 5(,( - Fo.)“()d(y —F, y)

Now we Fourier transform the function f(F) :

f(K)=[d% f(F) e /%" = d?F $6%(F-R;) e KT
J

ik P 2 o 0
=Ze—1k.Rj=(27r) 2 3 6kx—n2—” ok —m?®
a y c

j ac N=— M=—wn
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Reciprocal Lattice of a 2D Lattice
f(k)=xe ¥ Ri - @) g 3 5[1( 2?”) é‘(ky -mz?"]

j ac p=—wm=—

y
([ ([
( ] (]
a=cy
»
aj=ax x
(]
Direct lattice
* Note also that the reciprocal lattice in k-space is defined by the set of all points for
which the k-vector satisfies, ~
ik.R;
e =
for all ﬁj of the direct lattice
* Reciprocal lattice as the FT of the direct lattice or as set of all points in k-space
for which expli k . Ri =1 forall Rj , are equivalent statements }

_/
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Reciprocal Lattice of a 2D Lattice

[ ] [ ]

(] . (]

a=cy

o >
aj=ax x

(]

Direct lattice

* The reciprocal lattice of a Bravais lattice is always a Bravais lattice and has its own
primitive lattice vectors, for example, b1 and b, in the above figure

* The position vector G of any point in the reciprocal lattice can be expressed in
terms of the primitive lattice vectors:

G=n 51 +m 52 { For m and n integers
So we can write the FT in a better way as:

f(k)= (2:) 3 5(k ZZJé(ky—mzf)=(2”)zZéz(k—éj)

nN=—00 M=—0

where Q, = ac is the area of the direct lattice primitive cell

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University



Reciprocal Lattice of a 3D Lattice

Consider a orthorhombic direct lattice:
R=na,+ma,+pa;  wheren, m, and p are integers a
Then the corresponding delta-function lattice is: c ‘a'
<a—>

f(F)=x 6°(F-R;)
J
A 3D delta function has the property: J‘d3f 53(F - Fo) g(F) = g(Fo

The reciprocal lattice in k-space is defined by the set of all points for which the k-
vector satisfies: exp\i k . Rj)= 1 forall R; of the direct lattice. The above relation
will hold if k equals G : ) ) )
_ _ - ~ - T A - T . = 7T
G=nby+mby+pbs and b1=?x b2=?y by=—2
Finally, the FT of the direct lattice is:

f(K)=[d%F () e'*" =[d%F $&%(F-R;) e K"
J

ik R _ @2 s s\ @) s
-zt RS (k-G;)= 2o (k-G;)
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Direct Lattice Vectors and Reciprocal Lattice Vectors \
k
y

Direct lattice

R=n51+m52 é=nB1+m52

Remember that the reciprocal lattice in k-space is defined by the set of all points for
which the k-vector satisfies, L
el k-R_1q

for all R of the direct lattice

So for all direct lattice vectors R and all reciprocal lattice vectors G we must have:

(o}

i

e G-R _1q
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Reciprocal Lattice of General Lattices in 1D, 2D, 3D

More often that not, the direct lattice primitive vectors, a,, d,, and a; , are not
orthogonal

Question: How does one find the reciprocal lattice vectors in the general case?
ID lattice:

If the direct lattice primitive vector is: d@;=a X
and length of primitive cell is: Q,=a

Then the reciprocal lattice primitive vector is: 51 = zi X NOtei
R 2 a 51 . b1 =2z
f(r)=z_ é‘(r—Rj) < f(l?):—”z 5(k—Gj) 16 B
i Q e 7P Tm _q
2D lattice:
If the direct lattice is in the x-y plane and the primitive vectors are: a;and a,
and area of primitive cell is: Q, = ‘51 x 52‘ B A w5 2=
Then the reciprocal lattice primitive vectors are: by =27 axz b, = 2”ﬂ
Q, Q,
f0)-3 7R, -5 (g
(r)_§ 8 (F-R;) <«—> flk)= L (k-6))
J
Note: éjsk =2ﬂ'5jk and eiGp'R’" =1
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Reciprocal Lattice of General Lattices in 1D, 2D, 3D

3D lattice:

If the direct lattice primitive vectors are: a,,a,, and a;
and volume of primitive cell is: Q3 = ‘51 . (52 X 53]

Then the reciprocal lattice primitive vectors are: Note:
- ayxd; dgxa; a, x a. aj.by =276y
by =272"%8 py=27B"A p =272 / :
Qg Q3 Q3
6;)

7)) <= 1()-25 -6

3

s 2T . .

by=""(%+y)
d=b % b
f=-treby a9
2="5 Y

2
Q, =[dy x| = % 4z/b
4z/b
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The Brillouin Zone

The Wigner-Seitz primitive cell of the reciprocal lattice centered at the origin is
called the Brillouin zone (or the first Brillouin zone or FBZ)

A ) Wigner-Seitz primitive cell
1D direct lattice: l
—_—

—
| p— | | N -
® & — e ® ® e & %
a=ax
Reciprocal lattice: First Brillouin zone
—_— —
1 o — o
- 2r . x
b1 =—X
2D lattice: a
y Wigner-Seitz ky ) )
primitive cell ° Reciprocal lattice

First Brillouin zone

—
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Wigner-Seitz The Brillouin Zone
2D lattice:  primitive cell First Brillouin zone

by
b 4z/b
——>
4r/b
Direct lattice Reciprocal lattice

Volume/Areal/Length of the first Brillouin zone:

The volume (3D), area (2D), length (1D) of the first Brillouin zone is given in the
same way as the corresponding expressions for the primitive cell of a direct lattice:

1D O, = ‘ e ‘ Note that in all dimensions (d) the following
1= b1 relationship holds between the volumes, areas,
2D I =‘ R XEz‘ lengths of the direct and reciprocal lattice
2 1 primitive cells: (27z)d
3D T =|by . (B, xb3) Ma="0."
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Direct Lattice Planes and Reciprocal Lattice Vectors

There is an intimate relationship between reciprocal lattice vectors and planes of
points in the direct lattice captured by this theorem and its converse

Theorem: 3D lattice
If there is a family of parallel lattice
planes separated by distance “d ” and n
is a unit vector normal to the planes
then the vector given by,

= 2r .
G="2h
is a reciprocal lattice vector and so is:
27 . .
m* { m=integer
Converse:
If G; is any reciprocal lattice vector, .
and G is the reciprocal lattice vector d 2D lattice
of the smallest magnitude parallel to G, , ° ° °
then there exist a family of lattice planes ° ° ° .
perpendicular to G, and G, and Gk
separated by distance “d ” where: ° ° ° "
2z ° ° °

d="—

6|
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Ex\a\mple: Direct Lattice Planes and Reciprocal Lattice Vectors

Direct lattice™.

Consider:
. XV
G =by+b, =27r(—+ZJ
a c¢
. . = 2z ac
There must be a family of lattice planes’normal to G and separated by: ﬁ =T
a“+c
Now consider:
- 2%y
G =26, +b, =2n(—+¥J
a ¢
2z ac

here must be a family of lattice planes normal to G and separated by:

6™ Va? +ac?
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The BCC Direct Lattice

Direct lattice: BCC Reciprocal lattice: FCC

The direct and the reciprocal lattices are not necessarily always the same!

—
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The FCC Direct Lattice

4r/a

First Brillouin zone of
the BCC reciprocal
lattice for an FCC direct
lattice
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The Reciprocal Lattice and FTs of Periodic Functions

The relationship between delta-functions on a “d ” dimensional lattice and its Fourier
transform is:

17)=x 5(-r,) <=> 1(f)-2) 5 s9(k-g))
j Qq

Supper W(F) is a periodic function with the periodicity of the direct lattice then
by definition:

W(F +R;)=w(F)
forall R; of the direct lattice

One can always write a periodic function as a convolution of its value in the
primitive cell and a lattice of delta functions, as shown for 1D below:

W(x)

—1 1 1 ]

- a!/2 372 X

Wo(x)
Bl I DY S SN S

| a | | |

“a2

—
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The Reciprocal Lattice and FTs of Periodic Functions \
w(x)
—1 —1 1 1
a !

I :
IWQ (01 —a/2 a/2 X

il N f l} I

- Ea/ 2 a/2

Mathematically:
@
W(x)=Wu(x)® X6(x-na)
n=-—w
And more generally in “d ” dimensions for a lattice periodic function W(7) we have:
— — d(= =4
W(F)=Wo(F)® 25 (F-r))
Value of the function Lattice of delta
in one primitive cell functions

—
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The Reciprocal Lattice and FTs of Periodic Functions

For a periodic function we have:
W(F)=Wo () ® 2597 -R;)
J

Its FT is now easy given that we know the FT of a lattice of delta functions:

1F)=3 69 -R,) <=> (#)-25 59(k-6,)
i Qg j

We get
. N (2 Lo 2.) I _
w(K)=wo (k) (g) x64(k-6)) (5) 3 6%(k-6,)wa(6))
d J d J /
The FT looks like reciprocal
lattice of delta-functions with
If we now take the inverse FT we get: unequal weights
N d9% oy ik d% (27)° - <\ Lik.F
W(F)= wik)e'k-" = ¥ 6%k-G;)Wo(G;)e' ¥ "
() J.(Zﬂ')d () I(Zﬂ')d Qq 7 ( J) Q( J)

has wavevectors belonging to the
reciprocal lattice

Wq (éj) ,-éj F A lattice periodic function can always
\: Z Q4 e _— be written as a Fourier series that only
]

—
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The Reciprocal Lattice and X-Ray Diffraction
X-ray diffraction is the most commonly used method to study crystal structures

In this scheme, X-rays of wavevector k are sent into a crystal, and the scattered
X-rays in the direction of a different wavevector, say k', are measured

k' If the position dependent dielectric constant of the medium is
' given by £(F) then the diffraction theory tells us that the
amplitude of the scattered X-rays in the direction of k'is
proportional to the integral:

Sk > k') o [d%F e KT o(F)el KT

X

For X-ray frequencies, the dielectric constant is a periodic
function with the periodicity of the lattice. Therefore, one can

write: B 16, F
e(F)=Z£(Gj)e' T
j

Plug this into the integral above to get: S(E - R') oc ZE(G])(ZI[)35(E + ﬂj - E')

]
= X-rays will scatter in only those directions for which:

k'=k+G  where G is some reciprocal lattice vector

or: k'=k+G Because —G is also a reciprocal vector
whenever G is a reciprocal vector
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/ The Reciprocal Lattice and X-Ray Diffraction
Rl
= X-rays will scatter in only those directions for which:

k'=k+G (1)
k Also, the frequency of the incident and diffracted X-rays is the
same so:
o'=w
= k'c= ‘E‘c
= k= ‘R‘
L2 2 =2 Lo
() gives: |k|" =k +/G"+2k.G
L2 2 =2 [
=k =lk"+6 t2k.G
—~12 —~12 2 .
= k" =k +/6"+2k.6
e
=>tk.G= T Condition for X-ray diffraction
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The Reciprocal Lattice and X-Ray Diffraction
k' The condition, ‘é‘z
R . é = i 7
P> is called the Bragg condition for diffraction

Incident X-rays will diffract efficiently provided the incident
wavevector satisfies the Bragg condition for some
reciprocal lattice vector G

A graphical way to see the Bragg condition is that the incident wavevector lies on a
plane in k-space (called the Bragg plane) that is the perpendicular bisector of some
reciprocal lattice vector G

Bragg plane Bragg plane

S—
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/ The Reciprocal Lattice and X-Ray Diffraction
k' The condition,

k

=12
k.G== o
2
can also be interpreted the following way:

Incident X-rays will diffract efficiently when the reflected
waves from successive atomic planes add in phase

**Recall that there are always a family of lattice planes in
real space perpendicular to any reciprocal lattice vector

Condition for in-phase reflection from
successive lattice planes:

2dcos(9)=m 4

’ N [m 2—”] cos(9) = 1(m 2”]2
/ | A0 d 2 d
k é‘z

GomZn kG-
d 2
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Bragg Planes
2D square
reciprocal lattice

\1 / L

Corresponding to every reciprocal L]

lattice vector there is a Bragg plane in

k-space that is a perpendicular

bisector of that reciprocal lattice \ -/
vector \

Lets draw few of the Bragg planes for °

the square 2D reciprocal lattice
corresponding to the reciprocal lattice

vectors of the smallest magnitude / .\

ny | .

NN NN

1D square reciprocal lattice

—
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Bragg Planes and Higher Order Brillouin Zones
2D square
reciprocal lattice
Bragg planes are shown for the ° \ / °
square 2D reciprocal lattice

corresponding to the reciprocal lattice

vectors of the smallest magnitude \ /
'\ 3 3
3 1 3
°
Higher Order Brillouin Zones N A
The nth BZ can be defined as the region b 4

in k-space that is not in the (n-1)th BZ
and can be reached from the origin by /
crossing at the minimum (n-1) Bragg \

.\
planes ° /

N\
The length (1D), area (2D), volume (3D)
of BZ of any order is the same {stBZ 2ndBZ 3dBZ

N
RN R X ETR R
1D square reciprocal lattice

—
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Appendix: Proof of the General Lattice FT Relation in 3D

This appendix gives proof of the FT relation:
— - 3 — —
f(F):Z 53(F—Rj) < f(k)z(ZQL)Z 63(k—Gj)
J 3

for the general case when the direct lattice primitive vectors are not orthogonal
Let: §=n1 é1+n2 52 +n3 53
Define the reciprocal lattice primitive vectors as:

dyxa; agxay - a\xa
2 3 b2=2ﬂ'3 1 b3=2ﬂ'1 2

-
bi=2x Q3 Q3 Q3

Note:  &; by =27 Sk
Now we take FT:

f(K)=1d% f(F) e %7 =[d% $63(F-R;) e/ K"
J

—
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Appendix: Proof

One can expand k in any suitable basis. Instead of choosing the usual basis:
k=keX+kyy+k,z
| choose the basis defined by the reciprocal lattice primitive vectors:
k=kq by+ky by + ks by
Given that: &; . by, =27 Sik

| get:
’,-(”)= Ze_i k. f\’j _ 3 e—i k .(n1é1+n252+n3é3)
J nq Nz n3
= X &(ky—my)5(ky — my) 5(ks —m3)
mq my m3
Now:

(ky—my) 5(ky — my) 5(ks — my) 53(R—é)

where: G = my by+m, b, + m3 by

But we don’t know the exact weight of the delta function 53 (R - G)

—
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Appendix: Proof

since: k=kyX+k,y+k;z and k =kyq by+ky by + k3 by

This implies: k b, b, b, Ky
ky =| bay b2y by | k2 N U
kz b3x b3y b3z k3

0 0 o
Any integral over k-space in the form:  [dky [dk, [dk;

—00 —0oo —00

) 0 oo}
can be converted into an integral in the form: [dk, | dky [dk,

—00 —0oo —00

by the Jacobian of the transformation:

[dkqy [dky [dks

—0o0 —00 —a0

—00 -0 —00

B w % alky , ky o kz)
dk dk, [dk, — | X1 ¥’@°Z
[akx | dky Tdke a(ky , k , k3)

Therefore: 6(’( . )
8(ky—my) 8(ky — my) 8(ks —m3) = =¥ "2

0(kq, k2, k3)

5%(k-6)

—
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Appendix: Proof

From (1) on previous slide:
k. ky k)

5 _(@n
6(k1,k2,k3) -

=‘51-(b2><53]=173 o

Therefore:

f(’?)=2_e_ik'kj= Y &(ky—my)5(ky — my) 5(ks — my)
j

mq mz ms3

_(@n)® G
= 973%53('(_ G))

—
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