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Handout 5

The Reciprocal Lattice

In this lecture you will learn:

• Fourier transforms of lattices

• The reciprocal lattice

• Brillouin Zones

• X-ray diffraction

• Fourier transforms of lattice periodic functions

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Fourier Transform (FT) of a 1D Lattice

Consider a 1D Bravais lattice:

xaa ˆ1 


Now consider a function consisting of a “lattice” of delta functions – in which a delta 
function is placed at each lattice point:
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The FT of this function is (as you found in your homework):

 xf

The FT of a train of delta functions is also a train of delta functions in k-space
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Reciprocal Lattice as FT of a 1D Lattice

xaa ˆ1 
 x

 xf

FT is:
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The reciprocal lattice is defined by the position of the delta-functions in the FT of 
the actual lattice (also called the direct lattice)
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Direct lattice (or the actual lattice):

Reciprocal lattice:

x

xk
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Reciprocal Lattice of a 1D Lattice
For the 1D Bravais lattice,

xaa ˆ1 


The position vector        of any lattice point is given by: 1anRn


nR


xaa ˆ1 
 x

    


n
nRxxf




 xf

      










 n

Rkixki

n
nx

nx eeRxdxkf
 .The FT of this function is:

The reciprocal lattice in k-space is defined by the set of all points for which the k-
vector satisfies,

1. nRkie


for ALL         of the direct latticenR


For the points in k-space belonging to the reciprocal lattice the summation                           
becomes very large!       


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Reciprocal Lattice of a 1D Lattice
For the 1D Bravais lattice,

xaa ˆ1 


The position vector        of any lattice point is given by: 1anRn


nR


For      to satisfy                     , it must be that for all      :1. nRkie


k


nR


where m is any integer

Therefore, the reciprocal lattice is:

The reciprocal lattice in k-space is defined by the set of all points for which the k-
vector satisfies,

1. nRkie


for ALL         of the direct latticenR

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Reciprocal Lattice of a 2D Lattice

Consider the 2D rectangular Bravais lattice:

xaa ˆ1 


yca ˆ2 


If we place a 2D delta function at each lattice 
point we get the function:
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The above notation is too cumbersome, so we write it in a simpler way as:
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A 2D delta function has the property:      oo rgrgrrrd


 22 
and it is just a product of two 1D delta functions corresponding to the x and y
components of the vectors in its arguments:
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Reciprocal Lattice of a 2D Lattice
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Reciprocal lattice

• Note also that the reciprocal lattice in k-space is defined by the set of all points for 
which the k-vector satisfies,

1
.

jRki
e



for all         of the direct latticejR


• Reciprocal lattice as the FT of the direct lattice or as set of all points in k-space 
for which                                for all        , are equivalent statements     1.exp jRki


jR



ECE 407 – Spring 2009 – Farhan Rana – Cornell University

xaa ˆ1 

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Direct lattice
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Reciprocal Lattice of a 2D Lattice

• The reciprocal lattice of a Bravais lattice is always a Bravais lattice and has its own 
primitive lattice vectors, for example,       and        in the above figure 

• The position vector       of any point in the reciprocal lattice can be expressed in 
terms of the primitive lattice vectors:
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G
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So we can write the FT in a better way as:
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where 2 = ac is the area of the direct lattice primitive cell
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Reciprocal Lattice of a 3D Lattice

a

d

c 1a
2a



3a


Consider a orthorhombic direct lattice: 

321 apamanR


 where n, m, and p are integers

    
j
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 3

Then the corresponding delta-function lattice is:

A 3D delta function has the property:      oo rgrgrrrd


 33 

The reciprocal lattice in k-space is defined by the set of all points for which the k-
vector satisfies:                               for all         of the direct lattice. The above relation 
will hold if       equals       :
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Finally, the FT of the direct lattice is:
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Direct Lattice Vectors and Reciprocal Lattice Vectors
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
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21 amanR
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 21 bmbnG




Remember that the reciprocal lattice in k-space is defined by the set of all points for 
which the k-vector satisfies,

1. Rkie


for all         of the direct lattice

So for all direct lattice vectors and all reciprocal lattice vectors we must have:

R


1. RGie


G


R




6

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Reciprocal Lattice of General Lattices in 1D, 2D, 3D

More often that not, the direct lattice primitive vectors,                              , are not 
orthogonal 

321  and ,, aaa


Question: How does one find the reciprocal lattice vectors in the general case?

ID lattice:

If the direct lattice primitive vector is:
and length of primitive cell is:  = a
Then the reciprocal lattice primitive vector is: 
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2

2D lattice:

If the direct lattice is in the x-y plane and the primitive vectors are:
and area of primitive cell is: 
Then the reciprocal lattice primitive vectors are: 
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Reciprocal Lattice of General Lattices in 1D, 2D, 3D

3D lattice:

If the direct lattice primitive vectors are:
and volume of primitive cell is: 

Then the reciprocal lattice primitive vectors are: 

3
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


j
jGkkf
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 3213 . aaa

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

Note:
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Example 2D lattice:
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The Brillouin Zone

The Wigner-Seitz primitive cell of the reciprocal lattice centered at the origin is 
called the Brillouin zone (or the first Brillouin zone or FBZ)

xaa ˆ1 


x
a

b ˆ
2

1




1D direct lattice:

Reciprocal lattice:

x

xk

Wigner-Seitz primitive cell

First Brillouin zone

2D lattice:

xaa ˆ1 


yca ˆ2 


x

y

Direct lattice

Wigner-Seitz 
primitive cell

x
a

b ˆ
2

1


 xk

yk

y
c

b ˆ
2

2




Reciprocal lattice

First Brillouin zone
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The Brillouin Zone
2D lattice:

Direct lattice Reciprocal lattice

Wigner-Seitz 
primitive cell First Brillouin zone

b

y
b

x
b

a ˆ
2

ˆ
22 



2

2

212
b

aa 

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 
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b
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ˆˆ
2

ˆˆ
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2

1













b4

b4

1a


2a
 1b


2b


y
b

x
b

a ˆ
2

ˆ
21 



Volume/Area/Length of the first Brillouin zone:

The volume (3D), area (2D), length (1D) of the first Brillouin zone is given in the 
same way as the corresponding expressions for the primitive cell of a direct lattice:

212 bb




 3213 . bbb




11 b


1D

2D

3D

Note that in all dimensions (d) the following 
relationship holds between the volumes, areas, 
lengths of the direct and reciprocal lattice 
primitive cells:  

d

d

d 


2
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Direct Lattice Planes and Reciprocal Lattice Vectors

There is an intimate relationship between reciprocal lattice vectors and planes of 
points in the direct lattice captured by this theorem and its converse

Theorem:
If there is a family of parallel lattice 
planes separated by distance “d ” and      
is a unit vector normal to the planes 
then the vector given by,

is a reciprocal lattice vector and so is:

Converse:
If        is any reciprocal lattice vector, 
and         is the reciprocal lattice vector 
of the smallest magnitude parallel to      , 
then there exist a family of lattice planes 
perpendicular to        and      , and 
separated by distance “d ” where:

n̂

n
d

G ˆ
2




1G


G


1G


G
d 

2


1G


G


d
d

G


3D lattice

2D lattice

G


d

 integer  ˆ
2

mn
d

m

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Example: Direct Lattice Planes and Reciprocal Lattice Vectors

xaa ˆ1 

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Direct lattice

Reciprocal lattice







 

c
y

a
x

bbG
ˆˆ

221 


Consider:

There must be a family of lattice planes normal to       and separated by:  G


22

2

ca

ac

G 










 

c
y

a
x

bbG
ˆˆ2

22 21 


Now consider:

There must be a family of lattice planes normal to       and separated by:  G


22 4

2

ca

ac

G 



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The BCC Direct Lattice

a

a

a

a

x

y

z

Direct lattice: BCC Reciprocal lattice: FCC

a4

a4

a4

The direct and the reciprocal lattices are not necessarily always the same! 
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The FCC Direct Lattice

a

a

a x

y

z

Direct lattice: FCC Reciprocal lattice: BCC

a4

a4

a4

First Brillouin zone of 
the BCC reciprocal 
lattice for an FCC direct 
lattice
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The Reciprocal Lattice and FTs of Periodic Functions

The relationship between delta-functions on a “d ” dimensional lattice and its Fourier 
transform is:

    
j

j
d Rrrf


       




j
j

d

d

d

Gkkf


2

Supper             is a periodic function with the periodicity of the direct lattice then 
by definition:

 rW


   rWRrW j




for all         of the direct latticejR


One can always write a periodic function as a convolution of its value in the 
primitive cell and a lattice of delta functions, as shown for 1D below:

x2a2a
a

2a2a xa

 xW

 xW

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

x2a2a
a

2a2a xa

 xW

 xW

The Reciprocal Lattice and FTs of Periodic Functions

Mathematically:

      





n
anxxWxW 

And more generally in “d ” dimensions for a lattice periodic function            we have: rW


       
j

j
d RrrWrW




Value of the function 
in one primitive cell

Lattice of delta 
functions
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The Reciprocal Lattice and FTs of Periodic Functions

       
j

j
d RrrWrW




For a periodic function we have:

Its FT is now easy given that we know the FT of a lattice of delta functions:

    
j

j
d Rrrf


       




j
j

d

d

d

Gkkf


2

We get:

              


 


 
j

jj
d

d

d

j
j

d

d

d

GWGkGkkWkW


 22

The FT looks like reciprocal 
lattice of delta-functions with 
unequal weightsIf we now take the inverse FT we get:

 
 

 
 

     
  rGi

j d

j

j

rki
jj

d

d

d

d

d
rki

d

d

je
GW

eGWGk
kd

ekW
kd

rW















.

..

        

2

22






 









A lattice periodic function can always 
be written as a Fourier series that only 
has wavevectors belonging to the 
reciprocal lattice
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The Reciprocal Lattice and X-Ray Diffraction
X-ray diffraction is the most commonly used method to study crystal structures

In this scheme, X-rays of wavevector      are sent into a crystal, and the scattered 
X-rays in the direction of a different wavevector, say      , are measured

k


'k


k


'k


If the position dependent dielectric constant of the medium is 
given by           then the diffraction theory tells us that the 
amplitude of the scattered X-rays in the direction of       is 
proportional to the integral:

'k
 r




    rkirki ererdkkS
  ..'3'   

For X-ray frequencies, the dielectric constant is a periodic 
function with the periodicity of the lattice. Therefore, one can 
write:

    rGi

j
j

jeGr
 .

 

Plug this into the integral above to get:        '2' 3 kGkGkkS j
j

j


 

 X-rays will scatter in only those directions for which:

Gkk


' where       is some reciprocal lattice vectorG


Gkk


' Because           is also a reciprocal vector 
whenever        is a reciprocal vector 

G



G
Or:
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The Reciprocal Lattice and X-Ray Diffraction

k


'k


 X-rays will scatter in only those directions for which:

Gkk


'
Also, the frequency of the incident and diffracted X-rays is the 
same so:

kk

ckck










'

'

' 

(1)

(1) gives: GkGkk


.2'
222


2
.

.2

.2'

2

222

222

G
Gk

GkGkk

GkGkk














Condition for X-ray diffraction

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

The Reciprocal Lattice and X-Ray Diffraction

k


'k


2
.

2
G

Gk






The condition,

is called the Bragg condition for diffraction

Incident X-rays will diffract efficiently provided the incident 
wavevector satisfies the Bragg condition for some 
reciprocal lattice vector G



A graphical way to see the Bragg condition is that the incident wavevector lies on a 
plane in k-space (called the Bragg plane) that is the perpendicular bisector of some 
reciprocal lattice vector G



G


k


Gkk


'

Bragg plane

k-space

G


k


Gkk


'

Bragg plane

k-space
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G


d


  

 

2
.

2
2
1

cos
22

cos2

2

2

G
Gk

d
m

d
m

md





























Real space

The Reciprocal Lattice and X-Ray Diffraction

k


'k


2
.

2
G

Gk






The condition,

can also be interpreted the following way:

Incident X-rays will diffract efficiently when the reflected 
waves from successive atomic planes add in phase

**Recall that there are always a family of lattice planes in 
real space perpendicular to any reciprocal lattice vector

k


n
d

mG ˆ
2




Condition for in-phase reflection from 
successive lattice planes:

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Bragg Planes
2D square 
reciprocal lattice

Corresponding to every reciprocal 
lattice vector there is a Bragg plane in 
k-space that is a perpendicular 
bisector of that reciprocal lattice 
vector

Lets draw few of the Bragg planes for 
the square 2D reciprocal lattice 
corresponding to the reciprocal lattice 
vectors of the smallest magnitude

1D square reciprocal lattice
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Bragg Planes and Higher Order Brillouin Zones
2D square 
reciprocal lattice

Bragg planes are shown for the 
square 2D reciprocal lattice 
corresponding to the reciprocal lattice 
vectors of the smallest magnitude

1st BZ 2nd BZ 3rd BZ

Higher Order Brillouin Zones

The nth BZ can be defined as the region 
in k-space that is not in the (n-1)th BZ 
and can be reached from the origin by 
crossing at the minimum (n-1) Bragg 
planes

The length (1D), area (2D), volume (3D) 
of BZ of any order is the same

1D square reciprocal lattice

1

2

2

2
2

3

3

33

3

3

3

3

12 2 33
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Appendix: Proof of the General Lattice FT Relation in 3D

    
j

jRrrf
 3       




j
jGkkf
 3

3

32 

This appendix gives proof of the FT relation:

for the general case when the direct lattice primitive vectors are not orthogonal 

3

21
3

3

13
2

3

32
1 22

ˆ
2













aa

b
aa

b
aa

b




jkkj ba 2. 


Let: 332211 anananR




Define the reciprocal lattice primitive vectors as:

Note: 

     



  





j

Rki

rki

j
j

rki

je

eRrrderfrdkf



 

.

.33.3

        



Now we take FT:
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Appendix: Proof

One can expand       in any suitable basis. Instead of choosing the usual basis:

I choose the basis defined by the reciprocal lattice primitive vectors:

k


zkykxkk zyx ˆˆˆ 


332211 bkbkbkk




   

      

 

321

321

332211

332211

..
 

mmm

nnn

anananki

j

Rki

mkmkmk

eekf j





Given that:

I get:

jkkj ba 2. 


       Gkmkmkmk


 3
332211 

Now:

332211 bmbmbmG


where:

But we don’t know the exact weight of the delta function  Gk


3

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Appendix: Proof

zkykxkk zyx ˆˆˆ 


332211 bkbkbkk


Since: and

This implies:


















































3

2

1

333

222

321

k

k

k

bbb

bbb

bbb

k

k

k

zyx

zyx

xxx

z

y

x

Any integral over k-space in the form:

can be converted into an integral in the form:













321 dkdkdk













zyx dkdkdk

by the Jacobian of the transformation:

 
  





























321

321 ,,

,,
dkdkdk

kkk

kkk
dkdkdk zyx

zyx

(1)

Therefore:

       
   Gk

kkk

kkk
mkmkmk zyx 





 3

321
332211 ,,

,,

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Appendix: Proof

From (1) on previous slide:

 
     

3

3

3321
321

2
.

,,

,,






 
bbb

kkk

kkk zyx 

Therefore:

       

    




  

j
j

mmmj

Rki

Gk

mkmkmkekf j



 

3

3

3

332211
.

2
       

 
321






