# **Handout 5**

## The Reciprocal Lattice

### In this lecture you will learn:

- Fourier transforms of lattices
- The reciprocal lattice
- Brillouin Zones
- · X-ray diffraction
- Fourier transforms of lattice periodic functions

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# Fourier Transform (FT) of a 1D Lattice

Consider a 1D Bravais lattice:



Now consider a function consisting of a "lattice" of delta functions – in which a delta function is placed at each lattice point:

$$f(x) = \sum_{n=-\infty}^{\infty} \delta(x - n a)$$

The FT of this function is (as you found in your homework):

$$f(k_x) = \int\limits_{-\infty}^{+\infty} dx \sum\limits_{n=-\infty}^{\infty} \delta(x-n \ a) \ e^{-i \ k_x \ x} = \sum\limits_{n=-\infty}^{\infty} e^{i \ k_x \ n \ a} = \frac{2\pi}{a} \sum\limits_{m=-\infty}^{\infty} \ \delta\left(k_x - m \ \frac{2\pi}{a}\right)$$

The FT of a train of delta functions is also a train of delta functions in k-space





# **Reciprocal Lattice of a 1D Lattice**

For the 1D Bravais lattice,



The position vector  $\vec{R}_n$  of any lattice point is given by:  $\vec{R}_n = n \vec{a}_1$ 

The reciprocal lattice in k-space is defined by the set of all points for which the kvector satisfies,

$$e^{i \vec{k} \cdot \vec{R}_n} = 1$$

for ALL  $\vec{R}_n$  of the direct lattice

For  $\vec{k}$  to satisfy  $e^{i \vec{k} \cdot \vec{R}_n} = 1$ , it must be that for all  $\vec{R}_n$ :

$$\vec{k} \cdot \vec{R}_n = 2\pi \times \{ \text{ integer } \}$$

$$\Rightarrow k_x \ na = 2\pi \times \{ \text{ integer } \}$$

$$\Rightarrow k_X = m \frac{2\pi}{a} \quad \left\{ \quad \text{where } m \text{ is any integer} \right.$$

Therefore, the reciprocal lattice is:



 $\vec{b}_1 = \frac{2\pi}{8} \hat{x}$ FOR 407 - Spring 2009 - Farhan Rana - Cornell University

# Reciprocal Lattice of a 2D Lattice

# Consider the 2D rectangular Bravais lattice:

If we place a 2D delta function at each lattice point we get the function:

$$f(x,y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x-n a) \, \delta(y-m c)$$



The above notation is too cumbersome, so we write it in a simpler way as:

$$f(\vec{r}) = \sum_{j} \delta^{2}(\vec{r} - \vec{R}_{j})$$
 The summation over " $j$ " is over all the lattice points

A 2D delta function has the property:  $\int d^2\vec{r} \ \delta^2(\vec{r}-\vec{r}_o) \, g(\vec{r}) = g(\vec{r}_o)$  and it is just a product of two 1D delta functions responding to the x and y components of the vectors in its arguments:  $\delta^2(\vec{r}-\vec{r}_o) = \delta(x-\vec{r}_o.\hat{x})\delta(y-\vec{r}_o.\hat{y})$ 

Now we Fourier transform the function  $f(\vec{r})$ :

$$\begin{split} f(\vec{k}) &= \int d^2 \vec{r} \ f(\vec{r}) \ e^{-i \ \vec{k} \cdot \vec{r}} = \int d^2 \vec{r} \ \sum_j \delta^2 \left( \vec{r} - \vec{R}_j \right) \ e^{-i \ \vec{k} \cdot \vec{r}} \\ &= \sum_j e^{-i \ \vec{k} \cdot \vec{R}_j} = \frac{(2\pi)^2}{ac} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta \left( k_x - n \frac{2\pi}{a} \right) \delta \left( k_y - m \frac{2\pi}{c} \right) \end{split}$$

# **Reciprocal Lattice of a 2D Lattice**

$$f(\vec{k}) = \sum_{j} e^{-i \vec{k} \cdot \vec{R}_{j}} = \frac{(2\pi)^{2}}{ac} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta\left(k_{x} - n\frac{2\pi}{a}\right) \delta\left(k_{y} - m\frac{2\pi}{c}\right)$$



- $\vec{b}_2 = \frac{2\pi}{c} \hat{y}$ Reciprocal lattice  $\vec{b}_1 = \frac{2\pi}{a} \hat{x}$
- Note also that the reciprocal lattice in k-space is defined by the set of all points for which the k-vector satisfies,  $e^{i\,\vec{k}\cdot\vec{R}j}=\mathbf{1}$

for all  $\bar{R}_j$  of the direct lattice

**Direct lattice** 

• Reciprocal lattice as the FT of the direct lattice or as set of all points in k-space for which  $\exp(i \; \vec{k} \; . \; \vec{R}_j) = 1$  for all  $\; \vec{R}_j \;$ , are equivalent statements

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# **Reciprocal Lattice of a 2D Lattice**



- The reciprocal lattice of a Bravais lattice is always a Bravais lattice and has its own primitive lattice vectors, for example,  $\vec{b}_1$  and  $\vec{b}_2$  in the above figure
- ullet The position vector  $ar{G}$  of any point in the reciprocal lattice can be expressed in terms of the primitive lattice vectors:

$$\vec{G} = n \vec{b}_1 + m \vec{b}_2$$
 For *m* and *n* integers

 $\vec{G} = n \; \vec{b}_1 + m \; \vec{b}_2$  So we can write the FT in a better way as:

$$f(\vec{k}) = \frac{(2\pi)^2}{ac} \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} \delta\left(k_x - n\frac{2\pi}{a}\right) \delta\left(k_y - m\frac{2\pi}{c}\right) = \frac{(2\pi)^2}{\Omega_2} \sum_j \delta^2\left(\vec{k} - \vec{G}_j\right)$$

where  $\Omega_2$  = ac is the area of the direct lattice primitive cell

# **Reciprocal Lattice of a 3D Lattice**

Consider a orthorhombic direct lattice:

$$\vec{R} = n \vec{a}_1 + m \vec{a}_2 + p \vec{a}_3$$
 where n, m, and p are integers

Then the corresponding delta-function lattice is:

$$f(\vec{r}) = \sum_{j} \delta^{3}(\vec{r} - \vec{R}_{j})$$

A 3D delta function has the property:  $[d^3\vec{r} \ \delta^3(\vec{r} - \vec{r}_0) g(\vec{r}) = g(\vec{r}_0)$ 



$$\vec{G} = n \vec{b}_1 + m \vec{b}_2 + p \vec{b}_3$$
 and  $\vec{b}_1 = \frac{2\pi}{a} \hat{x}$   $\vec{b}_2 = \frac{2\pi}{c} \hat{y}$   $\vec{b}_3 = \frac{2\pi}{d} \hat{z}$ 

$$\hat{p}_1 = \frac{2\pi}{a} \hat{x}$$

$$\vec{b}_3 = \frac{2\pi}{d}$$

Finally, the FT of the direct lattice is:

$$f(\vec{k}) = \int d^3\vec{r} \ f(\vec{r}) \ e^{-i \, \vec{k} \cdot \vec{r}} = \int d^3\vec{r} \ \sum_i \delta^3(\vec{r} - \vec{R}_j) \ e^{-i \, \vec{k} \cdot \vec{r}}$$

$$=\sum_{j} \mathrm{e}^{-i\; \vec{k} \cdot \vec{R}_{j}} = \frac{(2\pi)^{3}}{\mathrm{acd}} \sum_{j} \delta^{3} \left( \vec{k} - \vec{G}_{j} \right) = \frac{(2\pi)^{3}}{\Omega_{3}} \sum_{j} \delta^{3} \left( \vec{k} - \vec{G}_{j} \right)$$



ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# **Direct Lattice Vectors and Reciprocal Lattice Vectors**



Remember that the reciprocal lattice in k-space is defined by the set of all points for which the k-vector satisfies,

$$e^{i \vec{k} \cdot \vec{R}} = 1$$

for all  $\bar{R}$  of the direct lattice

So for all direct lattice vectors  $\vec{R}$  and all reciprocal lattice vectors  $\vec{G}$  we must have:

$$e^{i\,\vec{G}\cdot\vec{R}}=1$$

# Reciprocal Lattice of General Lattices in 1D, 2D, 3D

More often that not, the direct lattice primitive vectors,  $\vec{a}_1$ ,  $\vec{a}_2$ , and  $\vec{a}_3$ , are not orthogonal

Question: How does one find the reciprocal lattice vectors in the general case?

### ID lattice:

If the direct lattice primitive vector is:  $\vec{a}_1 = a \hat{x}$ If the direct lattice primitive vector is:  $\vec{a}_1 = \vec{a}$  and length of primitive cell is:  $\Omega_1 = \vec{a}$ Then the reciprocal lattice primitive vector is:  $\vec{b}_1 = \frac{2\pi}{a}\hat{x}$   $f(\vec{r}) = \sum_j \delta(\vec{r} - \vec{R}_j) \iff f(\vec{k}) = \frac{2\pi}{\Omega_1} \sum_j \delta(\vec{k} - \vec{G}_j)$   $e^{i \vec{G}_p \cdot \vec{R}_m} = 1$ 

### 2D lattice:

If the direct lattice is in the x-y plane and the primitive vectors are:  $\vec{a}_1$  and  $\vec{a}_2$ and area of primitive cell is:  $\Omega_2 = |\vec{a}_1 \times \vec{a}_2|$ Then the reciprocal lattice primitive vectors are:  $\vec{b}_1 = 2\pi \frac{\hat{a}_2 \times \hat{z}}{\Omega_2}$   $\vec{b}_2 = 2\pi \frac{\hat{z} \times \vec{a}_1}{\Omega_2}$  $f(\vec{r}) = \sum_{i} \delta^{2}(\vec{r} - \vec{R}_{j}) \iff f(\vec{k}) = \frac{(2\pi)^{2}}{\Omega_{2}} \sum_{i} \delta^{2}(\vec{k} - \vec{G}_{j})$ 

Note:  $\vec{a}_j \cdot \vec{b}_k = 2\pi \delta_{jk}$  and  $e^{i \vec{G}_p \cdot \vec{R}_m} = 1$ 

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# Reciprocal Lattice of General Lattices in 1D, 2D, 3D

# 3D lattice:

If the direct lattice primitive vectors are:  $\vec{a}_1$ ,  $\vec{a}_2$ , and  $\vec{a}_3$  and volume of primitive cell is:  $\Omega_3 = |\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)|$ 

Then the reciprocal lattice primitive vectors are: 
$$\vec{b}_1 = 2\pi \frac{\hat{a}_2 \times \vec{a}_3}{\Omega_3} \quad \vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\Omega_3} \quad \vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\Omega_3}$$
 
$$e^{i \vec{G}_p \cdot \vec{R}_m} = 1$$

$$f(\bar{r}) = \sum_{j} \delta^{3}(\bar{r} - \bar{R}_{j}) \iff f(\bar{k}) = \frac{(2\pi)^{3}}{\Omega_{3}} \sum_{j} \delta^{3}(\bar{k} - \bar{G}_{j})$$

**Example 2D lattice:** 







# **Direct Lattice Planes and Reciprocal Lattice Vectors**

There is an intimate relationship between reciprocal lattice vectors and planes of points in the direct lattice captured by this theorem and its converse

### Theorem:

If there is a family of parallel lattice planes separated by distance "d" and  $\hat{n}$  is a unit vector normal to the planes then the vector given by,

$$\vec{G} = \frac{2\pi}{d}\hat{n}$$

is a reciprocal lattice vector and so is:

$$m\frac{2\pi}{d}\hat{n}$$
 {  $m = \text{integer}$ 

### Converse:

If  $\vec{G}_1$  is any reciprocal lattice vector, and  $\vec{G}$  is the reciprocal lattice vector of the smallest magnitude parallel to  $\vec{G}_1$ , then there exist a family of lattice planes perpendicular to  $\vec{G}_1$  and  $\vec{G}$ , and separated by distance "d" where:

$$d = \frac{2\pi}{|\vec{G}|}$$





ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# **Example: Direct Lattice Planes and Reciprocal Lattice Vectors**



Consider:

$$\vec{G} = \vec{b}_1 + \vec{b}_2 = 2\pi \left(\frac{\hat{x}}{a} + \frac{\hat{y}}{c}\right)$$

There must be a family of lattice planes normal to  $\vec{G}$  and separated by:  $\frac{2\pi}{|\vec{G}|} = \frac{ac}{\sqrt{a^2 + c^2}}$ 

Now consider:

$$\vec{G} = 2\vec{b}_1 + \vec{b}_2 = 2\pi \left(\frac{2\hat{x}}{a} + \frac{\hat{y}}{c}\right)$$

There must be a family of lattice planes normal to  $\vec{G}$  and separated by:  $\frac{2\pi}{|\vec{G}|} = \frac{ac}{\sqrt{a^2 + 4c^2}}$ 





# The Reciprocal Lattice and FTs of Periodic Functions

The relationship between delta-functions on a "d" dimensional lattice and its Fourier transform is:

$$f(\vec{r}) = \sum_{j} \delta^{d} (\vec{r} - \vec{R}_{j}) \iff f(\vec{k}) = \frac{(2\pi)^{d}}{\Omega_{d}} \sum_{j} \delta^{d} (\vec{k} - \vec{G}_{j})$$

Supper  $W(\vec{r})$  is a periodic function with the periodicity of the direct lattice then by definition:

$$W(\vec{r} + \vec{R}_j) = W(\vec{r})$$

for all  $\bar{R}_i$  of the direct lattice

One can always write a periodic function as a convolution of its value in the primitive cell and a lattice of delta functions, as shown for 1D below:



ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# The Reciprocal Lattice and FTs of Periodic Functions



Mathematically:

$$W(x) = W_{\Omega}(x) \otimes \sum_{n=-\infty}^{\infty} \delta(x-n a)$$

And more generally in "d" dimensions for a lattice periodic function  $W(\vec{r})$  we have:

$$W(\bar{r}) = W_{\Omega}(\bar{r}) \otimes \sum_{j} \delta^{d}(\bar{r} - \bar{R}_{j})$$

Value of the function in one primitive cell Lattice of delta functions

# The Reciprocal Lattice and FTs of Periodic Functions

For a periodic function we have:

$$W(\vec{r}) = W_{\Omega}(\vec{r}) \otimes \sum_{j} \delta^{d}(\vec{r} - \vec{R}_{j})$$

Its FT is now easy given that we know the FT of a lattice of delta functions:

$$f(\vec{r}) = \sum_{j} \delta^{d} \left( \vec{r} - \vec{R}_{j} \right) \iff f(\vec{k}) = \frac{(2\pi)^{d}}{\Omega_{d}} \sum_{j} \delta^{d} \left( \vec{k} - \vec{G}_{j} \right)$$

$$W(\bar{k}) = W_{\Omega}(\bar{k}) \times \frac{(2\pi)^d}{\Omega_d} \sum_j \delta^d(\bar{k} - \bar{G}_j) = \frac{(2\pi)^d}{\Omega_d} \sum_j \delta^d(\bar{k} - \bar{G}_j) W_{\Omega}(\bar{G}_j)$$

lattice of delta-functions with unequal weights

If we now take the inverse FT we get:

$$W(\vec{r}) = \int \frac{d^d \vec{k}}{(2\pi)^d} W(\vec{k}) e^{i \vec{k} \cdot \vec{r}} = \int \frac{d^d \vec{k}}{(2\pi)^d} \frac{(2\pi)^d}{\Omega_d} \sum_j \delta^d (\vec{k} - \vec{G}_j) W_{\Omega}(\vec{G}_j) e^{i \vec{k} \cdot \vec{r}}$$

$$= \sum_j \frac{W_{\Omega}(\vec{G}_j)}{\Omega_d} e^{i \vec{G}_j \cdot \vec{r}} \longrightarrow \text{A lattice periodic function can all be written as a Fourier series that have the proving to the large in the$$

A lattice periodic function can always be written as a Fourier series that only has wavevectors belonging to the reciprocal lattice

The Reciprocal Lattice and X-Ray Diffraction
X-ray diffraction is the most commonly used method to study crystal structures

In this scheme, X-rays of wavevector  $\vec{k}$  are sent into a crystal, and the scattered X-rays in the direction of a different wavevector, say  $\vec{k}'$ , are measured



If the position dependent dielectric constant of the medium is given by  $\varepsilon(\vec{r})$  then the diffraction theory tells us that the amplitude of the scattered X-rays in the direction of  $\vec{k}$ ' is proportional to the integral:

$$S(\vec{k} \to \vec{k}') \propto \int d^3\vec{r} e^{-i \vec{k}' \cdot \vec{r}} \varepsilon(\vec{r}) e^{i \vec{k} \cdot \vec{r}}$$

For X-ray frequencies, the dielectric constant is a periodic function with the periodicity of the lattice. Therefore, one can

 $\varepsilon(\vec{r}) = \sum_{i} \varepsilon(\vec{G}_{j}) e^{i \vec{G}_{j} \cdot \vec{r}}$ 

Plug this into the integral above to get:  $S(\vec{k} \to \vec{k}') \propto \sum_{j} \varepsilon(\vec{G}_{j}) (2\pi)^{3} \delta(\vec{k} + \vec{G}_{j} - \vec{k}')$   $\Rightarrow$  X-rays will scatter in only those directions for which:

 $\vec{k}' = \vec{k} + \vec{G}$ where  $\vec{\boldsymbol{G}}$  is some reciprocal lattice vector

Or:  $\vec{k}' = \vec{k} \pm \vec{G}$ Because  $-\vec{G}$  is also a reciprocal vector whenever  $\vec{G}$  is a reciprocal vector

# The Reciprocal Lattice and X-Ray Diffraction

k ----

⇒ X-rays will scatter in only those directions for which:

$$\vec{k}' = \vec{k} \pm \vec{G}$$
 (1)

Also, the frequency of the incident and diffracted X-rays is the same so:

$$\omega' = \omega$$

$$\Rightarrow |\vec{k}'|c = |\vec{k}|c$$

$$\Rightarrow |\vec{k}'| = |\vec{k}|$$

(1) gives: 
$$|\vec{k}'|^2 = |\vec{k}|^2 + |\vec{G}|^2 \pm 2 \vec{k} \cdot \vec{G}$$

$$\Rightarrow |\vec{k}'|^2 = |\vec{k}|^2 + |\vec{G}|^2 \pm 2 \vec{k} \cdot \vec{G}$$

$$\Rightarrow |\vec{k}|^2 = |\vec{k}|^2 + |\vec{G}|^2 \pm 2 \vec{k} \cdot \vec{G}$$

$$\Rightarrow \pm \vec{k} \cdot \vec{G} = \frac{|\vec{G}|^2}{2}$$
Condition for X-ray diffraction

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# The Reciprocal Lattice and X-Ray Diffraction



The condition,

$$\vec{K} \cdot \vec{G} = \pm \frac{\left| \vec{G} \right|^2}{2}$$

is called the Bragg condition for diffraction

Incident X-rays will diffract efficiently provided the incident wavevector satisfies the Bragg condition for some reciprocal lattice vector  $\vec{\mathbf{G}}$ 

A graphical way to see the Bragg condition is that the incident wavevector lies on a plane in k-space (called the Bragg plane) that is the perpendicular bisector of some reciprocal lattice vector  $\bar{G}$ 







The condition,

$$\vec{k} \cdot \vec{G} = \pm \frac{\left| \vec{G} \right|^2}{2}$$

can also be interpreted the following way:

Incident X-rays will diffract efficiently when the reflected waves from successive atomic planes add in phase

\*\*Recall that there are always a family of lattice planes in real space perpendicular to any reciprocal lattice vector



Condition for in-phase reflection from successive lattice planes:

$$2d\cos(\theta) = m \lambda$$

$$\Rightarrow \frac{2\pi}{\lambda} \left( m \frac{2\pi}{d} \right) \cos(\theta) = \frac{1}{2} \left( m \frac{2\pi}{d} \right)^{2}$$

$$\Rightarrow \bar{k} \cdot \vec{G} = \frac{|\vec{G}|^{2}}{2}$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# Bragg Planes Corresponding to every reciprocal lattice vector there is a Bragg plane in k-space that is a perpendicular bisector of that reciprocal lattice vector Lets draw few of the Bragg planes for the square 2D reciprocal lattice corresponding to the reciprocal lattice vectors of the smallest magnitude

# **Bragg Planes and Higher Order Brillouin Zones**

Bragg planes are shown for the square 2D reciprocal lattice corresponding to the reciprocal lattice vectors of the smallest magnitude

### **Higher Order Brillouin Zones**

The nth BZ can be defined as the region in k-space that is not in the (n-1)th BZ and can be reached from the origin by crossing at the minimum (n-1) Bragg planes

The length (1D), area (2D), volume (3D) of BZ of any order is the same



2D square

1D square reciprocal lattice

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# Appendix: Proof of the General Lattice FT Relation in 3D

This appendix gives proof of the FT relation:

$$f(\vec{r}) = \sum_{j} \delta^{3}(\vec{r} - \vec{R}_{j}) \iff f(\vec{k}) = \frac{(2\pi)^{3}}{\Omega_{3}} \sum_{j} \delta^{3}(\vec{k} - \vec{G}_{j})$$

for the general case when the direct lattice primitive vectors are not orthogonal

Let: 
$$\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3$$

Define the reciprocal lattice primitive vectors as:

$$\vec{b}_1 = 2\pi \frac{\hat{a}_2 \times \vec{a}_3}{\Omega_3} \quad \vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\Omega_3} \quad \vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\Omega_3}$$

Note:  $\vec{a}_i \cdot \vec{b}_k = 2\pi \delta_{ik}$ 

Now we take FT:

$$f(\vec{k}) = \int d^3 \vec{r} \ f(\vec{r}) \ e^{-i \vec{k} \cdot \vec{r}} = \int d^3 \vec{r} \ \sum_j \delta^3 (\vec{r} - \vec{R}_j) \ e^{-i \vec{k} \cdot \vec{r}}$$
$$= \sum_j e^{-i \vec{k} \cdot \vec{R}_j}$$

# **Appendix: Proof**

One can expand  $\vec{k}$  in any suitable basis. Instead of choosing the usual basis:

$$\vec{k} = k_x \hat{x} + k_y \hat{y} + k_z \hat{z}$$

I choose the basis defined by the reciprocal lattice primitive vectors:

$$\vec{k} = k_1 \vec{b}_1 + k_2 \vec{b}_2 + k_3 \vec{b}_3$$

Given that:  $\vec{a}_i \cdot \vec{b}_k = 2\pi \delta_{ik}$ 

I get:

$$f(\vec{k}) = \sum_{j} e^{-i \vec{k} \cdot \vec{R}_{j}} = \sum_{n_{1} n_{2} n_{3}} e^{-i \vec{k} \cdot (n_{1}\vec{a}_{1} + n_{2}\vec{a}_{2} + n_{3}\vec{a}_{3})}$$

$$= \sum_{m_{1} m_{2} m_{3}} \delta(k_{1} - m_{1}) \delta(k_{2} - m_{2}) \delta(k_{3} - m_{3})$$

Now:

$$\delta(k_1-m_1)\delta(k_2-m_2)\delta(k_3-m_3)\propto \delta^3(\bar{k}-\bar{G})$$

where:  $\vec{G} = m_1 \vec{b}_1 + m_2 \vec{b}_2 + m_3 \vec{b}_3$ 

But we don't know the exact weight of the delta function  $\delta^3(\vec{k}-\vec{G})$ 

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

# **Appendix: Proof**

Since: 
$$\vec{k} = k_x \hat{x} + k_y \hat{y} + k_z \hat{z}$$
 and  $\vec{k} = k_1 \vec{b}_1 + k_2 \vec{b}_2 + k_3 \vec{b}_3$ 

This implies:

$$\begin{bmatrix} k_{x} \\ k_{y} \\ k_{z} \end{bmatrix} = \begin{bmatrix} b_{1x} & b_{2x} & b_{3x} \\ b_{2x} & b_{2y} & b_{2z} \\ b_{3x} & b_{3y} & b_{3z} \end{bmatrix} \begin{bmatrix} k_{1} \\ k_{2} \\ k_{3} \end{bmatrix}$$
 (1)

Any integral over k-space in the form:  $\int_{-\infty}^{\infty} dk_1 \int_{-\infty}^{\infty} dk_2 \int_{-\infty}^{\infty} dk_3$ 

can be converted into an integral in the form:  $\int_{-\infty}^{\infty} dk_x \int_{-\infty}^{\infty} dk_y \int_{-\infty}^{\infty} dk_z$ 

by the Jacobian of the transformation:

$$\int\limits_{-\infty}^{\infty} dk_x \int\limits_{-\infty}^{\infty} dk_y \int\limits_{-\infty}^{\infty} dk_z \quad \rightarrow \quad \left| \frac{\partial \left( k_x \, , \, k_y \, , \, k_z \, \right)}{\partial \left( k_1 \, , \, k_2 \, , \, k_3 \, \right)} \right| \int\limits_{-\infty}^{\infty} dk_1 \int\limits_{-\infty}^{\infty} dk_2 \int\limits_{-\infty}^{\infty} dk_3$$

Therefore:

$$\delta(\mathbf{k}_1 - \mathbf{m}_1) \, \delta(\mathbf{k}_2 - \mathbf{m}_2) \, \delta(\mathbf{k}_3 - \mathbf{m}_3) = \left| \frac{\partial(\mathbf{k}_x, \mathbf{k}_y, \mathbf{k}_z)}{\partial(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)} \right| \, \delta^3(\bar{\mathbf{k}} - \bar{\mathbf{G}})$$

# **Appendix: Proof**

From (1) on previous slide:

$$\frac{\left|\frac{\partial \left(\mathbf{k}_{x}, \mathbf{k}_{y}, \mathbf{k}_{z}\right)}{\partial \left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)}\right| = \left|\bar{\mathbf{b}}_{1} \cdot \left(\bar{\mathbf{b}}_{2} \times \bar{\mathbf{b}}_{3}\right)\right| = \Pi_{3} = \frac{(2\pi)^{3}}{\Omega_{3}}$$

Therefore:

$$f(\vec{k}) = \sum_{j} e^{-i \, \vec{k} \cdot \vec{R}_{j}} = \sum_{m_{1} \, m_{2} \, m_{3}} \delta(k_{1} - m_{1}) \, \delta(k_{2} - m_{2}) \, \delta(k_{3} - m_{3})$$
$$= \frac{(2\pi)^{3}}{\Omega_{3}} \sum_{j} \delta^{3}(\vec{k} - \vec{G}_{j})$$