Handout 30

Optical Processes in Solids and the Dielectric Constant

In this lecture you will learn:

¢ Linear response functions

* Kramers-Kronig relations

« Dielectric constant of solids

¢ Interband and Intraband contributions to the dielectric constant of
solids
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Charge Dipole, Dipole Moment, and Polarization Density

A charge dipole consists of a negative and a positive charge separated by some
distance:

Dipole moment of a charge dipole is a vector p such that:
p=la/d
Polarization density vector P of a medium consisting of charge dipoles is the

product of the number N of dipoles per unit volume (i.e. dipole density) and the
strength of each dipole given by p:

P =Np=NQd

R
VUL
VLT
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Dielectric Constant of Non-Polar Materials

Non-Polar Dielectric Material (Non-polar Dielectric in an E-field
Insulator or Intrinsic Semiconductor)

+ +ve nucleus

‘ -ve electron
cloud (valence band

and core electrons)

Material gets polarized when placed in an electric field (i.e. develops charge
dipoles) because the electron cloud shifts relative to the nuclei

. Po=¢c, 2. E

P = Polarization density (# of dipoles N 03( e _
per unit volume times the D=g,E+P,=¢E
strength of one dipole) £=2¢&, (1 + Ze)
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Dielectric Constant of Polar Materials

Polar Dielectric Material
The phonon contribution The total (phonon + electron)

(Polar Insulator or L A I
Intrinsic Semiconductor) to Polarization contribution to Polarization

Call-on Anion

E

In polar materials, material polarization in an E-field has two contributions:

a) The phonon contribution: f’ph =&o Xph E

b) The electron contribution: Pe =¢€o Ye E
= D=6, E+P,+Py =€o(1+le +th)E
=&=6,(1+ e + Zpn)
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ielectric Constant of Materials: Phonon and Electron Contribution
In general, the susceptibilities are frequency dependent:
&(@) = & (1+ 16 (@) + 2pn(@))
Electrons respond much faster than the lattice

If one is working at frequencies that are too small compared to the characteristic
frequencies of yo(@) then one may make the approximation:

&(@)= &0 (1+ 26 (0)+ 2pn (@)
If we define:
e(oo):go (1+Ze(o)) 3(0)=30 (1+Ze(o)+lph(o))
then for small frequencies:
&(@) = &(0) + £ 7pn(@)

2
. . - nf /M,
Comparing with the expression in handout 19: e(a)) = 6‘(00)— 5 3
W -
ives us:
9 nf?/m,
€o Xph (@)=~ 2 2
@ —aro

And we have finally:

nf2/m 0)-
o) 0 1+ 20(0)~ 51+ 4(0) -0 “)=202)
0 I_) We now find theoelectronic

contribution
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High Frequency Dielectric Constant of Solids \

Consider a sinusoidal E&M wave of frequency @ propagating in a solid:

E(F.t)= A E, cos(q.F - t)=Re{ E(F,w) e @t} E 2
Where the electric field “phasor” is:
E(F,0)=AE,e' 9" H

Similarly, the magnetic field phasor is:
A(F,0)=(GxA)H, e 9"
And the two field are related by the two Maxwell equations:

V x E(f’,a)) - iwﬂoI:I(F,w) Faraday’s Law

Vx H(F,0) = —io e(w) E(F,@) Ampere’s Law
These two equations together give the dispersion relation of the E&M wave:
4l c
= = q
\/E(w) Ho \/s(w)/eo
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Strategy to Calculate the Dielectric Constant of Materials\
1) Start with the Hamiltonian describing the interaction of the electrons with the
electromagnetic field:

er|: eiq.r—ia;t+e—iq.r+ia)t ]

H=H,+ P.A

2m

o) = ol L
2) Find out how the electron wavefunctions (i.e. Bloch

functions) get modified using standard first order he
perturbation theory:

The above procedure, although doable, is a little complicated
and we will use an alternate approach!
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Refractive Index of Solids

E
k
i = P+ c_ il )
‘Wn,k >new ‘Wn,k> E% m,k ( )‘y/m,k >
3) From the modified wavefunctions, calculate the electron
charge density, and then the dipole density

e(w
The refractive index of a material is defined as: n(w)=_|~~
€o

C
The wave dispersion relation is then: O=q—F—
n(a)
And the electric field phasor can be written as:
o ;@ n(w)
E(f,0)=nRE,e'9""=hE,e ¢

§.F

The refractive index usually has real and imaginary parts:
n(w)=n'(@)+i n"(o)

The electric field phasor is then:

The imaginary part of the index describes
wave decay (or wave amplification if gain
is present)
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Imaginary Part of the Refractive Index and the Loss Coefficient

We have already seen that stimulated absorption results in a wave to decay in

a medium (optical loss): (@)
a\@d) ~ -
-—Fq.r

E(Ff,0)xce 2
Where:

he (Ry -R))
a(w)=%

(0 o o) 2 5 )00

raz (27)°
E
But we also have:
on"(e) . -
~ - q.r
e YA
This means the imaginary part of the refractive index is: o

n"(w) - c @ Stimula?ed/
@ absorption
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High Frequency Dielectric Constant of Solids: Imaginary Part

&lo
The refractive index of a material is defined as: n(a)) =

¢o
Therefore, using the fact that: |n" (@) << |n" ()

e(0) = & N?(0) = &, [ N"(0)+in"(0) B ~ &, [ n'(0) P +i2 g,n' (0)n" (@)

= &'(0)+is"(0) = &, [ n'(0) P +i2 £,n' (0)n" (o)

This implies:

&" (@)~ 26,0’ (0)n" () and &'(@)~ & n'(w) P

Using the expression for the imaginary part of the refractive index we get:

e @=(2f 2 (pu-a?) 26 [ K [0l 0)-£,(6)-r0)

Question: What is the real part of the dielectric constant?
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Linear Response Functions

Linear Response Functions:

In a linear time invariant (LTI) system, the stimulus phasor S(w) is related to the
response phasor R(®) by a linear response function y(®):

R(0) = r(o) S(o) { r@)=r'(0)+iy"(o)
The linear system must satisfy the following two properties:

i) It must be causal (system cannot respond before the stimulus is applied)
ii) A real stimulus S(f) must result in a real response R(f) (with no imaginary
component)

The second condition gives:
r-e)=7(@) = ylo)=r(o) and y"(-0)=-r"(»)

Most responses of solids are expressed in terms of linear response functions.
Examples include:

Conductivity: o(0) ———— J(F,0)= o(w) E(F,»)
Dielectric Constant:  g(0) — . B(F,0) = £(0) E(F,»)
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Linear Response Functions and Kramers-Kronig Relations

The two conditions, listed on previous slide, dictate that the real and imaginary parts
of any response function cannot be independent — they must be RELATED!

R(0) = 7(0) S(0) {r@=r@-ir@

This relationship between the real and the imaginary parts of the response functions
is captured by the Kramers-Kronig relations:

r@)=419 @) -r@l ;% —— O
0 QO —0

' o __ w% " "\ o'
7' (@)-7'(w)= 4‘{2” y (w;wz pe )

« If one knows the real part for all frequencies, then one can find the imaginary part
using Kramers-Kronig relations

* Conversely, if one knows the imaginary part for all frequencies, then one can find
the real part using Kramers-Kronig relations

PROOF OF KRAMERS-KRONIG RELATIONS GIVEN IN APPENDIX
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/ High Frequency Dielectric Constant of Solids: Real Part\
We have:

@)= (2) & (P ) 20 P [16)- RN E)-£4(0)- 1)

And from the Kramers-Kronig relations we know:

&'(w)-¢'(x)=-4 IZ—? &" (0" 2 a_fw.z {e' (0)=¢,

=>€'(“’)‘£O=—2[%J2h2 [P %) 2% 1 TK [ (@)1, (Ec(k)-E, ()"

rBz (27)°

rBz (27)°

o o@)=0o2(2) 17 (P ) 25 1 DK [10)- (6] (AGEAGN ‘
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/ High Frequency Dielectric Constant of Solids \

a2 [ ) 26 g LE (o)) LB

rBz (27)°

o e )b ) £ )]

FBZW

‘ (o) = (%]2§ (P -

* Note that our expression for dielectric constant takes \
into account interband transitions involving only a single
valence band and a single conduction band

* A more realistic expression would include interband
transitions among all bands of the solid

N\

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University



High Frequency Dielectric Constant of Solids

g AGRAGECAGR AR

2 3L
e v 4 d’k |5 .
"w)=|—| =5 2x [ —— |Pg.N
(@) (m) 2y FéZ(Zﬂ')s ‘ ”

So)=ro-2(2) 7 £ 2x | ;’2;‘3 Pro i o)1, ()] w(Er_(“)—Es(‘T

<
()
m
o]
N

—~

solid

E
* The above expression includes contributions from \ /
interband transitions among all pairs of bands of the \%
* Usually the most important and dominant contribution I

at frequencies of interest comes from interband 1 1 &
transitions between the highest occupied bands (i.e. the T
valence bands) and the lowest unoccupied band (i.e. the

conduction bands) TN
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Bandgaps and the High Frequency Dielectric Constant

c@-(5) 2 n 2 0 [P 6)- 1 ol (- £ 6) -0

2 3L
' e 2 d’k 5 .
e'w)=¢ —2(—) ey 2x ——P..n
(@)= m rs FéZ(Zﬂ')3‘ *

glo)
£"(0)

&'(@<< Eg)
ZAump “VNV e

N

AN

Frequency (hw) Frequency hw)

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University



Bandgaps and the High Frequency Dielectric Constant

a'(a))=£°—2[%j2h2 [P %) 2% 1 TK [ (0)-1,F) (E.(k)-£, (k)"

2 @) (1) - (E.(K)-E, ()}

Make some very rough estimates:

E
Suppose: fiw << Eg
()£ 0, M
f,(k)~1 ,(k)~0 ho A
. 2 - ]
2 <‘PCV .A > d3E ~ k
=>£'(w)z50+2(%J n? 573 széZW f, (k) /\

(en?(1 . 1\n,
()

2 (mg my Ef,

R Eg +

S L2
_ + 1\ 4 <\pcv.n\>
Remember the relation from your homework 7: | —+—|=—-———+
my mpy

= Materials with larger bandgaps will have smaller real parts of dielectric constants
(and, therefore, smaller real parts of refractive indices)
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Semiconductor Heterostructure Lasers
A Heterostructure Laser (Band Diagram) A Ridge Waveguide Laser Structur

electrons. oo 4——

o n
YY)
[% 330’0.0.::%]
l l photons
P-doped N-InP Insulator
N-doped | 38 88 0% %88 layer
InP °°2| Em N-InP InGaAsP layer

__/ 0o O substrate
holes

In semiconductor heterostructure laser, the wider bandgap material has smaller
refractive index than the narrower bandgap material

The combination of narrow and wide bandgap materials act like a dielectric optical
waveguide that confines and guides the photons

The heterostructure not only confines the carriers but it also confines the photons!!

N

S—
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Dielectric Constant: Case of Non-Zero Conductivity

We have obtained an expression for the dielectric constant
that incorporated interband optical processes and phonons

What if the material also contained large densities of electrons
or holes or both (i.e. what if the material was doped and =\" 1
conductive)?

Go back to Maxwell equations:

Vx H(F,0)= J(®)- ioe(0) E(F,®) Ampere’s Law

New term (current density due to electrons or holes or both)
J(@) = o(0) E(0)
= Vx H(F,0) = o(0) E(w)-io &(w) E(F, )

= Vx H(F,0) = —io ge5 (@) E(F, )

Where: o(w) The second term is the
Eeff (a)) = s(w)+ i——* ——— intraband or the free-carrie
@ contribution

hmg}
Vx E(F,0) = io uH(F, o) Faraday’s Law /\

/
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ef (@) = £(@) + i?

Dielectric Constant: Non-Zero Conductivity \
We have: E
7"/ &

Use the Drude model for the frequency dependent conductivity:\%

The equation for the electron drift velocity is (assuming

WJ;I»
parabolic/isotropic bands in 3D):
m, ﬂ _ mgv —_e E /\
dt T

In phasor notation (assuming a sinusoidal electric field):
V(@) =~ £()
1-iot
The current density is:
J(»)=n e V(o) = o(0) E(w)

where:
2
o-(a)) _ ne r'/me
1-iwt
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Assuming non-zero densities for both electrons and
holes the total conductivity becomes:

Dielectric Constant: Non-Zero Conductivity

2 2
O_(w)zne T/me+pe T/mh \%——" —Ef

We have:

Therefore:

"3
goff (@) = (@) + i? /\

1-iwr 1-iwt

Eeff (a)) =

Inter

processes and processes
phonons

s(0)+i ne"’r/me +i pezr/mh
o(1-ior)  o(1-iwr)
\_Y_I - ~ J

band optical Intraband optical

—
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Then we have:

ot (0) = (@) +1 "7 Me eyl A

=g(
=g(

The Plasma Frequency
Suppose we have a metal or a n-doped semiconductor for which:
o7 >>1
E
7"/ £

@ >> 010, VL0

ho<< E
g 0

’a)(1—ia)r) - iwr)

2 2
w)+’. ne T/.me ~ 6‘(w)_ ne /me
o(1-iwr)

2

(0]
w)|1-—F
) w2]

K

]
“ N

Where the plasma frequency is defined as:

ne2

For metals:
wp/2n ~4x 10"S Hz (UV-blue light frequency)

“P =\ &) mg

For semiconductors:

op /21 ~ 10" -10"3 Hz (Terahertz frequency

—
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Puttin? Everything Together

5ot (@)= 8(0)+1 T2 = &, (1+ 2 (@) + 2pn (@) +i T

=¢&o +gole(w)+golph(w)+' ( )

l_'_ll_'_l

Electronic part Phononic Conductivity part (electronic

(Interband) part intraband part or the free carrier part)
Electronic Parts:
=_2 2 2 P 2 fk)=7 (k (r() s())
=2 ()0 2 2 g S s @A

a(co) ; e r/me ; e 2 /m,,
@ a)(1—la)2') a)(1—la)1')

First line is the interband part and the second line is the inraband or the free-carrier part
Second line is non-zero only for conducting materials and has no zero frequency limit

Phononic Part:

nf?/M
€0Xph (0’)= - wz—/a)rzro

—
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Polaritons

Polaritons consist of electromagnetic waves coupled with some material wave or
material excitation

It is the name given to the phenomena where electromagnetic energy becomes
strongly coupled with material degrees of freedom

Some common examples of polaritons are:
1) Phonon-Polaritons

Electromagnetic waves become strongly coupled with the optical phonons of a polar
medium

2) Plasmon-Polaritons

Electromagnetic waves become strongly coupled with the plasma waves of a
conducting medium

3) Exciton-Polaritons

Electromagnetic waves become strongly coupled with excitons (bound electron-hole
airs)

—
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Transverse and Longitudinal Polaritons

For any medium: D= SOE +P= g(a))E Pp = -V.P
_ + .
V.E = M V.D= &
€o €o

Longitudinal Polaritons:
In longitudinal polaritons, the E-field has a non-zero divergence but the D-field has a
zero divergence:

. + . —
V.E=PuTPp _Pp g vh=Pui_0 = o =VP=z0
P
%o £o €o
If the E-field has a wave-like form: E = AE e/t
Then: V.E=0 = q.n=0

= E-field has a non-zero component in the direction of wave propagation

Transverse Polaritons:
In transverse polaritons, the E-field and the D-field both have a zero divergence:

VE=0 VD=0 = p,=0
If the E-field has a wave-like form: E = AE /37—t
Then: VE=0 = q.n=0

E-field has no component in the direction of wave propagation

—
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Longitudinal Polaritons
Suppose the E-field has a wave-like form:
E = AE e/d-7-iat

The D-field is given as:

D= £, +P = eot (0)E
For longitudinal polaritons we must have:

V.E=0

V.D =g (0)V.E=0

The only way that both these equations can hold is if the frequency of the longitudinal
polaritons is such that:

Eeff (w) =0
The above equation gives the frequency of the longitudinal polaritons

—
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Longitudinal Polaritons

Longitudinal Phonon-Polaritons: Consider a non-conducting polar medium (polar
semiconductor or a polar insulator) whose dielectric constant at frequencies much
smaller than the material bandgap energies is approximately,

con)= (o) "1 <)o Q=N - ) @, el |
o’ wro o - a’ro
The condition, g.¢ (@) = 0 gives:
@ =000
The longitudinal phonon-polaritons are just the polar longitudinal optical phonons!

Longitudinal Plasmon-Polaritons: Consider a conducting medium (like gold, silver)
whose dielectric constant at frequencies much larger than the phonon frequencies
but much smaller than the material bandgap energies is approximately,

o-( ) nez/m, Ng(w)_nez/me

e (@) = £(0)+i1 " = g(00) +i — 2 { oz >>1
o(1-iwr)
The condition, g (@) = 0 gives:
D=0, = 7ne2
P € (°°)me
longitudinal plasmon-polaritons are just the plasma waves!
E(m — Spring 2009 - Farhan Rana — Cornell University
Transverse Polaritons
Suppose the E-field has a wave-like form:
E = AE e/ —iat {vE=0 = gA=0

The D-field is given as:
D= £,E+P = eot (0)E
For transverse polaritons we must have:

VE=V.D=0

The electromagnetic wave equation when V.E = 0 is:
VxVx OE = a)zpoaeff(w)é
= V(}zéi— V2E = a)z,uoseff(w)é
= -V2E = ? Hoeff (w)é
The plane wave is a solution of the wave equation if:
2 Seff\?) (m)

€o
e above equation gives the dispersion of the transverse polaritons

= q3c?
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Transverse Phonon-Polaritons

Consider a non-conducting polar medium (polar semiconductor or a polar insulator)
whose dielectric constant at frequencies much smaller than the material bandgap
energies is approximately,

T e)-ofo €0 o o]

Eef (@) = &(c0) -7
w? v? —a’ro

o
The dispersion relation:a)2 L() =q 2¢2
€o

gives the following equation:

o* - 02(0f0 + 6% 5y () e 20l 5, /o() -

The resulting dispersion relation is plotted in
the Figure

Note that there is a band of frequencies in Reststrahlen band
which no electromagnetic wave can Dol—=—""r - / ________
propagate in the medium

Wrof--""""""""TTToTooooomoooooooes

(no propagating wave mode exists)

is band is called the Restsrahlen band q
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Transverse Plasmon-Polaritons

Consider a conducting medium (like gold, silver) whose dielectric constant at
frequencies much larger than the phonon frequencies but much smaller than the
material bandgap energies is approximately,

2
son(0)= o)1 7)< o) 267 o) "M (e
The dispersion relation: o2 %”7(‘0) =q>c?
€o

gives the following equation:

2

2 2 2.2 & ne
o =w,+q°c = |
PETE o) {“’P (o),

The resulting dispersion relation is plotted in

@
the Figure

Note that no electromagnetic wave can

propagate in the medium with a frequency

smaller than the plasma frequency Op | —

S—
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APPENDIX: Kramers-Kronig Relations (Proof)
In a linear time invariant (LTIl) system, the stimulus phasor S(®) is related to the
response phasor R(w) by:
R(a)= 7(e) S(w)

The linear response function is 7(0):  y(0)=7'(@)+i y" (@)
Reality:
Real inputs must result in a real response. This condition gives:

r-e)=r(0) = r(o)=y(e) and y"(-0)=-r"(o)
Causality:

; o w_ T deo —io(t-t)
Inverse FT gives:  R(t)= [dt' y(t-t') S(t") r(t-t)= | 27 r(w)e

—0 —0

Causality implies that the system cannot exhibit response to an input before the
input occurs:

y(t-t)=0  for t<t'
. . t
which gives: R(t)= [dt' y(t-t)S(t"

Infinite Frequency Response:
No physical system can respond at infinite frequencies, so:

7(@—> »)=0

—
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Kramers-Kronig Relations (Proof)

The causality condition is:
y(t)=0  for t<0
The function ¥ (@), when considered as an analytic function in the complex plane,

cannot have any pole in the upper half of the complex plane for the causality
condition to hold

Consider the following contour integral over the contour shown:
§@ y(wl) =0 C2
2r o-0' [
Since there are no poles in the upper half plane, TA
the closed contour contains no poles, and the (2] o'
contour integral must be zero
jdo’ @) _
2r o-o 0
I@M+I@M+Idly ).=°
‘w27 0-0' ¢ 2r 0-0' o, 2nH-0
© o N
= @MJrL},(w): 0

o 2w -0 2

—
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Kramers-Kronig Relations (Proof)

7 do' (@)

i
o 2w 0—-0' - —E}'(w)

Matching the real and imaginary parts on both sides gives:

* de' y"(@") Ao’ . o @
(o)=-2 [ 92 =_4{%%
y(w) _.[02” o—a' ({2”7(‘0) 2_w|2

© do' y'(e' °dw' ., , 1)
do' y'(0') )5

=4
L,Zn' o-o' !

") 2
7" (o) | I oe

Where the following relations have been used to get the second integrals:
r'(-w)=7'(@) and y"(-0)=-r"(o)

In cases where the real part of ¥ (@) may not be zero at infinite frequencies, as it
happened in the case of the dielectric constant, we just repeat the entire procedure
from the beginning with ¥ (#) — 7 ’() instead of y(w) to get:

r@=415" Fe)-r@) 52

r@)-r@=-a157 r@) " 5

—
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