Handout 3

Free Electron Gas in 2D and 1D

In this lecture you will learn:

* Free electron gas in two dimensions and in one dimension
* Density of States in k-space and in energy in lower dimensions
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Electron Gases in 2D

dimensions

Semiconductor Quantum Wells:

InGaAs
quantum well
(1-10 nm)

Semiconductor quantum
wells can be composed of
pretty much any
semiconductor from the
groups I, 11, IV, V, and VI of
the periodic table

TEM
micrograph

« In several physical systems electron are confined to move in just 2

* Examples, discussed in detail later in the course, are shown below:

STM

micrograph
- 3
=

Graphene:

»—§q>—>/
08
L=

Graphene is a single atomic layer
of carbon atoms arranged in a
honeycomb lattice

—
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Electron Gases in 1D

« In several physical systems electron are confined to move in just 1 dimension

* Examples, discussed in detail later in the course, are shown below:

Semiconductor Quantum Semiconductor Quantum Carbon Nanotubes
Wires (or Nanowires): Point Contacts (Rolled Graphene
(Electrostatic Gating): Sheets):

InGaAs
Quantum well

InGaAs
Nanowire

GaAs
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Electrons in 2D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent
Schrodinger equation:

- %VZW(FH V(F)y(F)=E y(F)

Consider a large metal sheet of area A= L, L, :

A= LxLy
Use the Sommerfeld model: 1
Y
* The electrons inside the sheet are confined in a L,
two-dimensional infinite potential well with zero
potential inside the sheet and infinite potential
outside the sheet
V(F)=0  for F inside the sheet \
V(F)=w  for F outside the sheet
free electrons
* The electron states inside the sheet are given (experience no
by the Schrodinger equation potential when inside
the sheet)
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Born Von Karman Periodic Boundary Conditions in 2D
2
solve: — L v2y(F)=E y(F)

Use periodic boundary conditions:

y
_ These imply that each ﬂ
W(x +Ley,s z) - W(X’ y,z) edge of the sheet is Ly

W(X,y + Ly,Z)= v(x,y,2) folded and joined to L
the opposite edge

Solution is:  w(F)= \/% ek 7 - \/; ei(kxx+kyy)

The boundary conditions dictate that the allowed values of k,, and k, are such

that:
i (kyLy) 2z
e' VixtxJ =1 = ky=n— n=0,%1,%2,£3,.......
Lx 3 ’ ’ tl
e’(“y"y)=1 - ky=mi” m=0,+1,£2,+3,.......
y

—
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Born Von Karman Periodic Boundary Conditions in 2D
Labeling Scheme:

All electron states and energies can be labeled by the corresponding k-vector
o |1 ik.F N

wi(F)= \P i E(k)="""

k A ( ) 2m

- A . 2 =2
Normalization: The wavefunction is properly normalized: Id r ‘l//,;(rj =1

Orthogonality: Wavefunctions of two different states are orthogonal:

. . ol k-Kk).7
Momentum Eigenstates:

Another advantage of using the plane-wave energy eigenstates (as opposed to the

“sine” energy eigenstates) is that the plane-wave states are also momentum
eigenstates

Momentum operator: p = ?V = p '/’E(F) = ?V '/’E(F) = nk '/’R(F)
Velocity:

Velocity of eigenstates is: V(E): %E = %VE E(q)

—
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States in 2D k-Space k, 2z

k-space Visualization: L,
The allowed quantum states states can be e o o o
visualized as a 2D grid of points in the entire
“k-space” e e ¢
2 2 — o — o
ky = n<Z ky, = m=<Z
L, Ly ky
2” [ ] [ ] [ ] [ ]
n,m=0,%1,%2, #3, ....... fI
y [ ] [ ] [ ] [ ]
Density of Grid Points in k-space:
Looking at the figure, in k-space there is only one grid point in every small
area of size:
[2”] 27| _ (22}
L, Ly A
A id poi i Very important
= There are grid points per unit area of k-space ry imp
27[)2 result
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The Electron Gas in 2D at Zero Temperature - |
* Suppose we have N electrons in the sheet.
N

* Then how do we start filling the allowed quantum states?

y
* Suppose T~0K and we are interested in a filling scheme

that gives the lowest total energy.

LX
The energy of a quantum state is: ky
2(, 2 2) 2,2
2m 2m e o 00
Strategy: o o o5 o
* Each grid-point can be occupied by two electrons ¢ ¢/ o o
(spin up and spin down) o qdoooe

« Start filling up the grid-points (with two electrons
each) in circular regions of increasing radii until
you have a total of N electrons

* When we are done, all filled (i.e. occupied)
quantum states correspond to grid-points that are
inside a circular region of radius kg

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University



The Electron Gas in 2D at Zero Temperaturek- ]

* Each grid-point can be occupied by two electrons (spin
up and spin down)

y
ke
« All filled quantum states correspond to grid-points that
are inside a circular region of radius kg \J k,

Area of the circular region= k,z_-

A 2 Fermi circle
Number of grid-points in the circular region = WX z K
V4
Number of quantum states (including A 2 A >
spin) in the circular region = 2x (2”)2 xz kg = ng
But the above must equal the total number N of electrons inside the box:
A >
N=_—k
2z
- elect density = N k,% Units of the electron
= n=electron density = A 27 density n are #/cm?

1
= kg =(27 n)2

—
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The Electron Gas in 2D at Zero Temperature - ll|

« All quantum states inside the Fermi circle are filled (i.e. k-V

occupied by electrons)
a

* All quantum states outside the Fermi circle are empty

Fermi Momentum:

The largest momentum of the electrons is: 7ikg

This is called the Fermi momentum

Fermi momentum can be found if ont1e knows the electron

\
J\kx

density: 1 Fermi circle
kF = (27[ n) 2
Fermi Energy: hzkz
The largest energy of the electrons is: = "F
2m 12K2
This is called the Fermi energy E¢: Er = =CF
2m
2
n“mrn m
Also: EF = or n=——E
F
m P h2
Fermi Velocity: nk
The largest velocity of the electrons is called the Fermi velocity v:: vg = =F
m

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University




The Electron Gas in 2D at Non-Zero Temperature - |

k
Y dk,
>

Recall that there are grid points per unit area of k- I:lIdky
space 2z

= Soinarea dk, dk, of k-space the number of kx
grid points is:

dk, dk, - A g%k

(2 )2 (2n)

= The summation over all grid points in k-space can be replaced by an area integral

d’k
A
allzk - Fanp (27:)2

Therefore:

a2k -
szxauzkf() 2><AI( zf )

f(—) is the occupation probability of a quantum state

—
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The Electron Gas in 2D at Non-Zero Temperature - I

The probability f(E) that the quantum state of wavevector kis occupied by an
electron is given by the Fermi-Dirac distribution function:

f(E): ‘1 Where: E(E): hz(k’z‘ + kﬁ)_ 2k’

1+ e ER)-E VKT 2m  2m

Therefore:
2k 1

(”)2 (q) 2 Af(zﬂ)z 1+ e ERN-E KT

Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form — an
energy space integral — using the following steps:

25 2,2 2
d?k = 21 k dk and E=%:>dE Mdk

Therefore:

d2k ©k dk
— =
( 7: o7 oxh

2xA|

—
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The Electron Gas in 2D at Non-Zero Temperature - ll|
d’k 1

i 1
N=2xA — =A(dE E
J @zY 1+ elEK}Er)KT (I, 920(E) 1+ e(EE VKT
. m
Where: 920(E) = 2 — Density of states function is constant
zh (independent of energy) in 2D
dp(E) has units: # / Joule-cm? k
y

The product g(E) dE represents the number of
quantum states available in the energy interval
between E and (E+dE) per cm? of the metal

Suppose E corresponds to the inner ci
from the relation:

n2k?

T 2m

And suppose (E+dE) corresponds to the outer
circle, then g,,(E) dE corresponds to twice the
number of the grid points between the two
circles

—
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The Electron Gas in 2D at Non-Zero Temperature - IV
2] 1 0
= A(J;dE 92p(E) 11 o E-E VKT = Ang 92p(E) f(E‘_Ef)

m 920(E)
Where: gop(E)= —s
wh

The expression for N can be visualized as the 3\f(E - Ef)

integration over the product of the two functions: E‘f E

Check: Suppose T=0K: © Ef
N= A(j)dE g2p(E) fF(E-Ef)=A [deE g2p(E)|

f(E-Ef)
1 ’ m
T=0K = A—zEf
Th
0
Ef E m
= n= —2Ef
zTh
Compare with the previous result at T=0K:
n= iEF At T=0K (and only at T=0K) the Fermi level

= E; is the same as the Fermi energy E¢

—
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The Electron Gas in 2D at Non-Zero Temperature -V
For T # 0K:

Since the carrier density is known, and does not change with temperature, the
Fermi level at temperature T is found from the expression

Ef
® 1
n= (I)dE g2D(E) L JE-E KT = KTIog 1+eKT

In general, the Fermi level E; is a function of temperature and decreases from E as
the temperature increases. The exact relationship can be found by inverting the
above equation and recalling that:

n= EF

hz
to get:

Ef
E¢(T)= KT log| eKT -1

—
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Total Energy of the 2D Electron Gas

The total energy U of the electron gas can be written as:

EROED

Convert the k-space |ntegral to energy integral:U = Aj'dE 920(E) f(E-Ef)E

U=2x x fk f(k) E(k)= 2xAj(

The energy density uistt = — = j'dE g2p(E) f(E- Ef) E

Suppose T=0K:
E?

Er m
u= dE E E =
(I) 920(E) 27 12

Since: n= Er

h2

1
We have: U = En Er

—
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2D Electron Gas in an Applied Electric Field - |
_ETE i EEE—
E=E,x

ky
~ h
f( )/"‘\\ I?(t:oo):l?—%é 7 ‘\\
/ o \‘

/
1 \
L4 ——) - -
kx \ / kx
Q 4

Electron distribution is shifted in
k-space when E-field is not zero

Distribution function: f| k + % E

Electron distribution in k-space
when E-field is zero
Distribution function: f(E)

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron

distribution is shifted as shown
—E
L.V

—
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2D Electron Gas in an Applied Electric Field - I
k

er E
Current density (units: A/lcm) T -
R 2k (. Y\ (- AN E
J=—2ex[ LK f(k+e—TEJ|7(k) 7 8
(2”)2 h |I o ]
00
Do a shift in the integration variable: \ /' k,
ZE \\ ‘d 7
J-—2ex|? f(k)v[ﬁ_ﬂé)
(27) h

Electron distribution is shifted in

25 Kl k- EE k-space when E-field is not zero

- d°k (- h e . - er
J=-2ex]| f(k) Distribution function: flk+—— E

(2z)? m n

2 25
J=“{2xj 9% (k)| e
m ( ”)2 electron density = n (units: #/cm?)
2
J=-"TE_GE
m
2 Same as the Drude result - but
units are different. Units of care

_ne‘r
Siemens in 2D
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Electrons in 1D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent
Schrodinger equation:

- Z,;ZW(X)+ V(x)y(x)=E y(x)

Consider a large metal wire of length L :

Use the Sommerfeld model:

* The electrons inside the wire are confined in a
one-dimensional infinite potential well with zero
potential inside the wire and infinite potential
outside the wire

V(x)=0  for x inside the wire
V(x)=  for x outside the wire _\

free electrons

* The electron states inside the wire are given by (experience no
the Schrodinger equation potential when inside
the wire)

—
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Born Von Karman Periodic Boundary Conditions in 1D

n® o*
Solve: - ﬂax—zy/(x) =E y(x)

Use periodic boundary conditions:

These imply that each

x+L,y,z)=w(x,y.z facet of the sheet is
w( y:2)=y(xy,2) folded and joined to

the opposite facet

Solution is: y/(x)=\E of (kxx)

The boundary conditions dictate that the allowed values of k, are such that:

elt)q o k= nzT’r n=0,+1,%2, 3, ......

—
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States in 1D k-Space

k-space Visualization:
The allowed quantum states states can be

visualized as a 1D grid of points in the entire 2z
k-space T
2z o—0o— 0o o o »
ky =n— T
x L 0 ky

Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small

length of size:
( )
L

= Thereare L grid points per unit length of k-space Very important
2z result /

—
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The Electron Gas in 1D at Zero Temperature - | \
* Each grid-point can be occupied by two electrons (spin
up and spin down)
k
« All filled quantum states correspond to grid-points that | F !|
are within a distance k: from the origin | | k

0 X
Length of the region = 2kg \]

Fermi points

L
Number of grid-points in the region = z—x 2kg
T

Number of quantum states (including L
spin) in the region = 2x gXZkF

But the above must equal the total number N of electrons in the wire:

2k
N=L%CE
T
. N  2kg Units of the electron
= n=electron density = . density n are #cm
zn
= kp="+
F= 2

—
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The Electron Gas in 1D at Zero Temperature - I|

« All quantum states between the Fermi points are filled (i.e.
occupied by electrons)
 All quantum states outside the Fermi points are empty

0 b
Fermi Momentum:
The largest momentum of the electrons is: 7ikg

This is called the Fermi momentum Fermi points
Fermi momentum can be found if one knows the electron
density:

Tn
ke =""

2
Fermi Energy:
The largest energy of the electrons is: = ~F

This is called the Fermi energy E¢: Ep=—"

n2r? n?
Also: Ep=—"— or n= \8m JEr

8m Th

Fermi Velocity: hk
The largest velocity of the electrons is called the Fermi velocity v:: Vvg = =F

—
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The Electron Gas in 1D at Non-Zero Temperature - |

L

Recall that there are _=_ grid points per unit length of k-
space 2z dk,

=
x

= Soin length dk, of k-space the number of 0
grid points is:

L ok

2z

= The summation over all grid points in k-space can be replaced by an integral

S o L dk,

all k Zw 27
Therefore:

N=2x = fk,)=2xL | Txs(k,)

all k o 21

f(kx) is the occupation probability of a quantum state

—
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The Electron Gas in 1D at Non-Zero Temperature - Il

The probability f(k x) that the quantum state of wavevector ky is occupied by an
electron is given by the Fermi-Dirac distribution function:

f(kX)_*WE K FE KT  Where: E( )=27n:
Therefore:
N=2xL j dkx fky)=2xL j 1

2” 1+ e Ekx)-Ef)KT
Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form — an
energy space integral — using the following steps:

2,2 2
ZLIZ—"—>2L2]’— and E%:dE_Hdk
T 07[

Therefore:

axt | ¥ (JaE 7V
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The Electron Gas in 1D at Non-Zero Temperature - llI

1
—o 2z 0 \/7 /

© dky 1 © 1
N=2xL f 27 1+ e EUkx)-Er)KT =’-£dE 91p(E) 1+ e EEJKT
v2m 1
Where: E)="" —_
ere g1D( ) zh JE

g4p(E) has units: #/ Joule-cm

The product g(E) dE represents the number of
quantum states available in the energy interval
between E and (E+dE) per cm of the metal

Suppose E corresponds to the inner points

from the relation: 2,2
E-= n“k
2m M kx
And suppose (E+dE) corresponds to the outer

points, then g,,(E) dE corresponds to twice the
number of the grid points between the points
(adding contributions from both sides)

—
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The Electron Gas in 1D at Non-Zero Temperature - IV
o0 1 2]
N=L[dE 9w0(E) | _E-g KT = L]dE 9w(E) f(E-Er)

ere: g1p = 2n JE

The expression for N can be visualized as the
integration over the product of the two functions:

Check: Suppose T=0K: © Ef
N= L{)dE g(E) f(E-Ef)=L lf)dE 91p(E)

f(E-Ef)
V8m
1 T=0K =Lﬁ\/Ef
0 e
Ey E o n=—8;ln JEf
T

Compare with the previous result at T7=0K:

n= \8m \/? At T=0K (and only at T=0K) the Fermi level
Y F E; is the same as the Fermi energy E¢
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The Electron Gas in 1D at Non-Zero Temperature - V

For T # 0K:

Since the carrier density is known, and does not change with temperature, the
Fermi level at temperature T is found from the expression

® 1

In general, the Fermi level E;is a function of temperature and decreases from E; as
the temperature increases.

—
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Total Energy of the 1D Electron Gas
The total energy U of the electron gas can be written as:
a0
U=2x Y f(k,)E(k,)=2xL | dkyx
all k —0 &7

Flkx) E(ky)

00

Convert the k-space integral to energy integral: U = L[dE g4p(E) f(E-Ef)E
0

u

The energy density u ist/ = L =

ZdE gp(E) F(E-Ef)E

Suppose T=0K:

Er /8m E¥?
u= [dE gip(E) E=~""~-F
0 T h 3

Since: n= 7V8':Jﬁ
z

1
We have: u=_nEg

3

—
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1D Electron Gas in an Applied Electric Field - |

—
f(kx) E=E,x

’IIF h h _\\I‘ _\\‘

’II |‘\ \II:\

I I s
Electron distribution in k-space Electron distribution is shifted in
when E-field is zero k-space when E-field is not zero
Distribution function: f(ky) Distribution function: f(kx + ehi Ex)

Since the wavevector of each electron is shifted by the same amount in the
presence of the E-field, the net effect in k-space is that the entire electron
distribution is shifted as shown

—_—t
L

—
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1D Electron Gas in an Applied Electric Field - I

Current (units: A)

I=—2ex T%f(k +5F xjv(kx)

—00

Do a shift in the integration variable:

1
© dk, er I
I=-2ex [ 2 Flk) V| kx ==~ Ex Electron distribution is shifted in
- k-space when E-field is not zero

co dk (kx —eh—TEx) Distribution function: f[k +&° Ex]
I=-2ex [ —* f(k, )T h

—00

e2
=== j —X f(ky)|E,
m
electron density = n (units: #/cm)
ne’r _ =
I= E=cE
m
2 Same as the Drude result - but
Where: o-"1€7 units are different. Units of oare
m Siemens-cm in 1D
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