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Handout 3

Free Electron Gas in 2D and 1D

In this lecture you will learn:

• Free electron gas in two dimensions and in one dimension
• Density of States in k-space and in energy in lower dimensions
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Electron Gases in 2D

• In several physical systems electron are confined to move in just 2 
dimensions

• Examples, discussed in detail later in the course, are shown below:

Semiconductor Quantum Wells:

GaAs

GaAs
InGaAs 
quantum well 
(1-10 nm)

Graphene:

Semiconductor quantum 
wells can be composed of 
pretty much any 
semiconductor from the 
groups II, III, IV, V, and VI of 
the periodic table

Graphene is a single atomic layer 
of carbon atoms arranged in a 
honeycomb lattice TEM 

micrograph

STM 
micrograph
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Electron Gases in 1D

• In several physical systems electron are confined to move in just 1 dimension

• Examples, discussed in detail later in the course, are shown below:

Semiconductor Quantum 
Wires (or Nanowires):

GaAs

InGaAs
Nanowire

GaAs

Semiconductor Quantum 
Point Contacts 
(Electrostatic Gating):

GaAs

InGaAs
Quantum well

Carbon Nanotubes 
(Rolled Graphene 
Sheets):

metal
metal
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Electrons in 2D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent 
Schrodinger equation:

       rErrVr
m

   2
2

2

Consider a large metal sheet of area A= Lx Ly : 

xL

yL
Use the Sommerfeld model:

• The electrons inside the sheet are confined in a 
two-dimensional infinite potential well with zero 
potential inside the sheet and infinite potential 
outside the sheet

• The electron states inside the sheet are given 
by the Schrodinger equation

 
  sheet  the  outside    for

sheet the inside    for0

rrV

rrV







free electrons 
(experience no 
potential when inside 
the sheet)

yxLLA 
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Born Von Karman Periodic Boundary Conditions in 2D

   rEr
m

   2
2

2
Solve:

Use periodic boundary conditions:

   
   zyxzLyx

zyxzyLx

y

x

,,,,

,,,,





 These imply that each 

edge of the sheet is 
folded and joined to 
the opposite edge

Solution is:    ykxkirki yxe
A

e
A

r


11 .




The boundary conditions dictate that the allowed values of kx , and ky are such 
that:

 

 
y

y
Lki

x
x

Lki

L
mke

L
nke

yy

xx





2
1

2
1



 n = 0, ±1, ±2, ±3,…….

m = 0, ±1, ±2, ±3,…….

xL

yL

yxLLA 
x

y
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Born Von Karman Periodic Boundary Conditions in 2D
Labeling Scheme:

All electron states and energies can be labeled by the corresponding k-vector

 
m

k
kE

2

22
  rki

k e
A

r



 .1


Momentum Eigenstates:

Another advantage of using the plane-wave energy eigenstates (as opposed to the 
“sine” energy eigenstates) is that the plane-wave states are also momentum 
eigenstates

Momentum operator: 
i

p
̂      rkr

i
rp kkk





   ˆ

Normalization: The wavefunction is properly normalized:   1
22  rrd k




Orthogonality: Wavefunctions of two different states are orthogonal:

   
 

kk

rkki

kk A
e

rdrrrd 






,'

.'
2*

'
2  



Velocity:

Velocity of eigenstates is:    kE
m
k

kv k






 

1



4

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

States in 2D k-Space

xL
2

yL
2

k-space Visualization:

The allowed quantum states states can be 
visualized as a 2D grid of points in the entire 
“k-space”

y
y

x
x L

mk
L

nk
 22



Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small 
area of size:

 
ALL yx

2222 




















 22
A There are                grid points per unit area of k-space Very important 

result

n, m = 0, ±1, ±2, ±3, …….

xk

yk
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The Electron Gas in 2D at Zero Temperature - I
• Suppose we have N electrons in the sheet. 

• Then how do we start filling the allowed quantum states? 

• Suppose T~0K and we are interested in a filling scheme 
that gives the lowest total energy.

xk

yk

N

The energy of a quantum state is:

   
m

k

m

kk
kE yx

22

22222






Strategy:
• Each grid-point can be occupied by two electrons 
(spin up and spin down)

• Start filling up the grid-points (with two electrons 
each) in circular regions of increasing radii until 
you have a total of N electrons

• When we are done, all filled (i.e. occupied) 
quantum states correspond to grid-points that are 
inside a circular region of radius kF

Fk

xL

yL

yxLLA 
x

y
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xk

yk

Fk

Fermi circle

• Each grid-point can be occupied by two electrons (spin 
up and spin down)

• All filled quantum states correspond to grid-points that 
are inside a circular region of radius kF

Area of the circular region = 

Number of grid-points in the circular region = 

2
Fk

 
2

22
Fk

A 




Number of quantum states (including 
spin) in the circular region =  

22
2 22

2 FF k
A

k
A







But the above must equal the total number N of electrons inside the box:

2

2 Fk
A

N




2
density  electron

2
Fk

A
N

n 

  2

1

2 nkF 

The Electron Gas in 2D at Zero Temperature - II

Units of the electron 
density n are #/cm2
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xk

yk

Fk

Fermi circle

• All quantum states inside the Fermi circle are filled (i.e. 
occupied by electrons) 
• All quantum states outside the Fermi circle are empty

Fermi Momentum:
The largest momentum of the electrons is:
This is called the Fermi momentum
Fermi momentum can be found if one knows the electron 
density:

Fk

  2

1

2 nkF 

Fermi Energy:
The largest energy of the electrons is:

This is called the Fermi energy EF :
m
kF

2

22

m
k

E F
F 2

22


Fermi Velocity:
The largest velocity of the electrons is called the Fermi velocity vF :

m
k

v F
F




The Electron Gas in 2D at Zero Temperature - III

m
n

EF
2

 or FE
m

n 2
Also:
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 22
A

Recall that there are                grid points per unit area of k-
space

 So in area                     of k-space the number of 
grid points is:         

yx dkdk

   
kd

A
dkdk

A
yx

2
22 22 



xk

yk
xdk

ydk

 The summation over all grid points in k-space can be replaced by an area integral 

  2

2

  all 2
kd

A
k





Therefore:

 
 

 kf
kd

AkfN
k





 

2

2

  all 2
22



The Electron Gas in 2D at Non-Zero Temperature - I

 kf


is the occupation probability of a quantum state
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The Electron Gas in 2D at Non-Zero Temperature - II

The probability          that the quantum state of wavevector     is occupied by an 
electron is given by the Fermi-Dirac distribution function:

k
 kf



     TKEkE fe
kf


 



1

1

Therefore:

 
 

     KTEkE fe

kd
Akf

kd
AN


 






1

1

2
2

2
2

2

2

2

2



   
m

k

m

kk
kE yx

22

22222





Where:

Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form – an 
energy space integral – using the following steps:

dkkkd 22 


and dk
m
k

dE
m
k

E
222

2




Therefore:

  


0
2

0
2

2

2
2 dE

m
A

dkk
A

kd
A






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The Electron Gas in 2D at Non-Zero Temperature - III

         KTEEDKTEkE ff e
EgdEA

e

kd
AN 



 





1

1

1

1

2
2 2

0
2

2






Where:  
22


m
Eg D  Density of states function is constant 

(independent of energy) in 2D

g2D(E) has units: # / Joule-cm2

The product g(E) dE represents the number of 
quantum states available in the energy interval 
between E and (E+dE) per cm2 of the metal

xk

yk

Suppose E corresponds to the inner circle 
from the relation:

m
k

E
2

22


And suppose (E+dE) corresponds to the outer 
circle, then g2D(E) dE corresponds to twice the 
number of the grid points between the two 
circles
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 fEEf 

EfE

 Eg D2

The expression for N can be visualized as the 
integration over the product of the two functions:

The Electron Gas in 2D at Non-Zero Temperature - IV

       fDKTEED EEfEgdEA
e

EgdEAN
f











2
0

2
0 1

1

Where:  
22


m
Eg D 

Check: Suppose T=0K:

E
0

1

fE

T = 0K

     

f

f

D

E

fD

E
m

n

E
m

A

EgdEAEEfEgdEAN
f

2

2

2
0

2
0

    
















Compare with the previous result at T=0K:

FE
m

n 2
  At T=0K (and only at T=0K) the Fermi level 

Ef is the same as the Fermi energy EF

 fEEf 
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The Electron Gas in 2D at Non-Zero Temperature - V

    















 


TK

E

KTEED

f

f
eTK

m

e
EgdEn 1log

1

1
22

0 

For T ≠ 0K:

Since the carrier density is known, and does not change with temperature, the 
Fermi level at temperature T is found from the expression

In general, the Fermi level Ef is a function of temperature and decreases from EF as 
the temperature increases. The exact relationship can be found by inverting the 
above equation and recalling that: 

 











 1log KT

E

f

F

eKTTE

FE
m

n 2


to get:
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Total Energy of the 2D Electron Gas

The total energy U of the electron gas can be written as:

   
 

   kEkf
kd

AkEkfU
k





  2

2

  all 2
22



Convert the k-space integral to energy integral:    EEEfEgdEAU fD 


2
0

The energy density u is:    EEEfEgdE
A
U

u fD 


2
0

Suppose T=0K:

  2
22

0 2
FD

E
E

m
EEgdEu

F




FE
m

n 2
Since:

We have: FEnu
2
1


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2D Electron Gas in an Applied Electric Field - I

xk

yk

Electron distribution in k-space 
when E-field is zero

xk

yk

Electron distribution is shifted in 
k-space when E-field is not zero

xEE x ˆ


  E
e

ktk




 


Distribution function:  kf


Distribution function: 





  E

e
kf





 

E
e 






Since the wavevector of each electron is shifted by the same amount in the 
presence of the E-field, the net effect in k-space is that the entire electron 
distribution is shifted as shown

 kf


xL

yL

E

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2D Electron Gas in an Applied Electric Field - II

xk

yk

Electron distribution is shifted in 
k-space when E-field is not zero

E


Distribution function: 





  E

e
kf





 

E
e 




Current density (units: A/cm)

 
 kvE

e
kf

kd
eJ















 


 2

2

2
2

Do a shift in the integration variable:

 
 

 
 

 
 

EE
m
en

J

Ekf
kd

m
e

J

m

E
e

k
kf

kd
eJ

E
e

kvkf
kd

eJ

























































 









 

2

2

22

2

2

2

2

2
2

2
2

2
2

Where:
m
en 

2


Same as the Drude result - but 
units are different. Units of  are 
Siemens in 2D

electron density = n (units: #/cm2)
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Electrons in 1D Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent 
Schrodinger equation:

       xExxVx
xm

 



 2

22

2


Consider a large metal wire of length L : 

L

Use the Sommerfeld model:

• The electrons inside the wire are confined in a 
one-dimensional infinite potential well with zero 
potential inside the wire and infinite potential 
outside the wire

• The electron states inside the wire are given by 
the Schrodinger equation

 
    wirethe  outside    for

 wirethe inside    for0

xxV

xxV




free electrons 
(experience no 
potential when inside 
the wire)
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Born Von Karman Periodic Boundary Conditions in 1D

Solve:

Use periodic boundary conditions:

   zyxzyLx ,,,,  
These imply that each 
facet of the sheet is 
folded and joined to 
the opposite facet

Solution is:    xki xe
L

x
1



The boundary conditions dictate that the allowed values of kx  are such that:

 
L

nke x
Lki x 2

1  n = 0, ±1, ±2, ±3,…….

   xEx
xm

 




2

22

2


L
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States in 1D k-Space

L
2

k-space Visualization:

The allowed quantum states states can be 
visualized as a 1D grid of points in the entire 
“k-space”

L
nkx

2


Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small 
length of size:









L
2

2
L There are           grid points per unit length of k-space Very important 

result

n = 0, ±1, ±2, ±3, …….

xk0

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

xk

Fk

Fermi points

• Each grid-point can be occupied by two electrons (spin 
up and spin down)

• All filled quantum states correspond to grid-points that 
are within a distance kF from the origin

Length of the region = 

Number of grid-points in the region = 

Fk2

Fk
L

2
2




Number of quantum states (including 
spin) in the region = 

But the above must equal the total number N of electrons in the wire:


Fk

LN
2




Fk

L
N

n
2

density  electron 

2
n

kF




The Electron Gas in 1D at Zero Temperature - I

Units of the electron 
density n are #/cm

0

Fk

Fk
L

2
2

2 

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• All quantum states between the Fermi points are filled (i.e. 
occupied by electrons) 
• All quantum states outside the Fermi points are empty

Fermi Momentum:
The largest momentum of the electrons is:
This is called the Fermi momentum
Fermi momentum can be found if one knows the electron 
density:

Fk

Fermi Energy:
The largest energy of the electrons is:

This is called the Fermi energy EF :
m
kF

2

22

m
k

E F
F 2

22


Fermi Velocity:
The largest velocity of the electrons is called the Fermi velocity vF :

m
k

v F
F




The Electron Gas in 1D at Zero Temperature - II

m
n

EF 8

222
 or FE

m
n


8

Also:

xk

Fermi points

0

2
n

kF



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2
LRecall that there are            grid points per unit length of k-

space

 So in length            of k-space the number of 
grid points is:         

xdk

xdk
L
2

xk
xdk

 The summation over all grid points in k-space can be replaced by an integral 




 2  all

x

k

dk
L

Therefore:

   x
x

k
x kf

dk
LkfN 



 2
22

  all


The Electron Gas in 1D at Non-Zero Temperature - I

 xkf is the occupation probability of a quantum state

0
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The Electron Gas in 1D at Non-Zero Temperature - II

The probability            that the quantum state of wavevector        is occupied by an 
electron is given by the Fermi-Dirac distribution function:
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Density of States:

The k-space integral is cumbersome. We need to convert into a simpler form – an 
energy space integral – using the following steps:
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The Electron Gas in 1D at Non-Zero Temperature - III
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Where: Density of states function in 1D

g1D(E) has units: # / Joule-cm

The product g(E) dE represents the number of 
quantum states available in the energy interval 
between E and (E+dE) per cm of the metal

xk

Suppose E corresponds to the inner points 
from the relation:
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And suppose (E+dE) corresponds to the outer 
points, then g1D(E) dE corresponds to twice the 
number of the grid points between the points 
(adding contributions from both sides)
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The expression for N can be visualized as the 
integration over the product of the two functions:

The Electron Gas in 1D at Non-Zero Temperature - IV

Where:

Check: Suppose T=0K:
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Compare with the previous result at T=0K:

 At T=0K (and only at T=0K) the Fermi level 
Ef is the same as the Fermi energy EF
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The Electron Gas in 1D at Non-Zero Temperature - V

For T ≠ 0K:

Since the carrier density is known, and does not change with temperature, the 
Fermi level at temperature T is found from the expression

In general, the Fermi level Ef is a function of temperature and decreases from EF as 
the temperature increases. 
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Total Energy of the 1D Electron Gas

The total energy U of the electron gas can be written as:
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Convert the k-space integral to energy integral:    EEEfEgdELU fD 
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1D Electron Gas in an Applied Electric Field - I

xk

Electron distribution in k-space 
when E-field is zero

xk

Electron distribution is shifted in 
k-space when E-field is not zero
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Since the wavevector of each electron is shifted by the same amount in the 
presence of the E-field, the net effect in k-space is that the entire electron 
distribution is shifted as shown
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1D Electron Gas in an Applied Electric Field - II

Electron distribution is shifted in 
k-space when E-field is not zero

Distribution function: 
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Do a shift in the integration variable:

 

 

 

EE
m
en

I

Ekf
dk

m
e

I

m

E
e

k
kf

dk
eI

E
e

kvkf
dk

eI

xx
x

xx

x
x

xxx
x






































 









 













2

2

2
2

2
2

2
2

Where:
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Same as the Drude result - but 
units are different. Units of  are 
Siemens-cm in 1D

electron density = n (units: #/cm)
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