Handout 24

The Effective Mass Theorem and the Effective Mass
Schrodinger Equation

In this lecture you will learn:

* Electron states in crystals with weak potential perturbations
* The effective mass theorem

* The effective mass Schrodinger equation

* The donor and acceptor impurity levels in crystals

G. H. Wannier, Phys. Rev., 52, 191 (1937).
J. C. Slater, Phys. Rev., 76, 1592 (1949).
J. M. Luttinger and W. Kohn, Phys. Rev., 97, 869 (1955).
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Perturbed Electrons in Energy Bands

1) The quantum states of an electron in a crystal are given by Bloch functions
that obey the Schrodinger equation:

Ay, i(F)=Enk)y, i (F)
where the wavevector k is confined to the FBZ and “n” is the band index

2) Under a lattice translation, Bloch functions obey the relation:
- ik.R =
VailF+R)=e* Ry 2(7)
Now we ask the following question: if an external potential is added to the crystal
Hamiltonian,
H+U(rF)
then what happens? How do the electrons behave? How do we find the new
energies and eigenstates?

[4+u@) lv(F) =EvF)

The external potential could represent, for example, an applied E-field or an
applied B-field, or potentials due to impurity atoms, or inhomogeneous
nanostructures
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Some Preliminaries
Statement of problem: Need to solve,

[A+u@) () =Ev(F)

As always, we will start from a completely different point to solve the problem
stated above

Recall that the energy bands are lattice-periodic in the reciprocal space,

En(k +G)=En(K)

When a function in real space is lattice-periodic, we can expand it in a Fourier
series,

V(F+K’)=V(F) = V(f)=§v(éj)eiéj.f—

= When a function is lattice-periodic in reciprocal space, we can also expand it in
Fourier series of the form,

E,(k+G)=E,(k) = (,;)=§ E,(R;)e' I
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A Brief Review

E,(k+6)=E,(k) = E,(k)= ZE( el i #

Recall the operator:

R;.V

E,(- N)=§E,,(R,)e

When we apply this operator to a Bloch function from the same band (i.e. the n-th
band) we got:

n( iv)'//,-,k(r) Z

The result above implies that the action of the operator E'n (— iV) on a Bloch function
belonging to the same band is that of the Hamiltonian!

En(- W)y, ()= Ay, ((F)=Enlk)w, ; (F)
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Solution Strategy
Now we come back to the problem:
[A+u@) v = Ev@)

We want to see how the Bloch function ¥, ¢ (F) is perturbed
by the potential.

Energy

We write the solution as a superposition using Bloch
functions from the same n-th band :

x|
S

v(F)=_ ¥ clk)y,:(F)

knear k,
[A+u@) Jv(F)=Ev(F)
= [ En(- W) +UG) Jv(?) = E v ()

where we have replaced the Hamiltonian operator by én (-iv)

to get,

7\

We are seeking a solution near a particular point Ro in k-space. For example, near a
band extremum. For k near Kk, we can approximate all Bloch functions as,

V’n,E(F)= ol K- F ”n,E(F)” el K-F Uni ()= of (k=ko). F Vo, ()
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The Envelope Function

NG

W(F) - k ne%r K C(E)l//n,,; (F)

o

= 5 clk)e!®F)ry L (#)

k near k, ko
i\ ilk-ko ). F =
- Ene%l' Ra C(k) el( O) r:| W"’EO (r)

—4(F) ¥, ()

The above expression shows that we are approximating the solution as a product of
a Bloch function and another (unknown) function ¢(7‘) which is called the envelope
function. By construction the envelope function is slowly varying in space (on atomic
scale).

We use the above form of the solution in the equation,
[E.- %)+ UG) |6(F) v, i ()= E 6(F) v, i (F)
First we look at:
En-1V) 6 vz, ()
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The Effective Mass Schrodinger Equation
En- V) 6 v (F) = SEn(R;)e™ ¥ 4(F) v i (F)
i

= %En(ﬁi) #lF+ k])'//n,l?o (F+R;)

|
<
S
b]
—_
~
N
- M
m
S
_
X
L.
N—
‘bh
x|

Vi, ) %E,,(Rj)ei (ko-iv).R; #(F)

=V, (F) Enlko - V) (F)
This implies:

[En-)+U®) |6 v, ()= E 6Py, (P)
= Vi, ()| Enllo - 1v)+ UF) [6(F) = E 9(F) v, 4 (F)
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The Effective Mass Theorem

Finally we have the following equation for the envelope function:

[£,(k, - %)+ UF) ]¢(F) = E 4(F)

The effective mass theorem states the following:

a) In the presence of a weak perturbing potential the solution for electron states
near K, in k-space can be represented as a product of a slowly varying

envelope function and a Bloch function

V()= ) v,z ()

b) The slowly varying envelope function obeys the effective mass Schrodinger

equation:

[ £, (K, - %)+ UF) |6(F) = E 4(F)
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The Envelope Function Energy

[ £, (K, - iv)+ UF) |6(F) = E 4(F)

Electron S\ (= (5
wavefunction W(r)_ ¢(r) Ynk, (r )

/ \ ko
Slowly varying envelope function Bloch function \

—0—0 00 0 0 0 0 ¢
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The Effective Mass Schrodinger Equation: An Example

Energy
Consider a conduction energy band with the dispersion:

EC(E)= E.+ hz(kx — k‘”‘)z + hz(ky - koyy + hz(kz _koz)2
2my zm.V.V 2my,,

Now suppose an external potential U(F) is present. The
electron states near the conduction band bottom in the
presence of the external potential are described by the effective
mass equation:

[Ecko - v)+U(F) Jo(F) - E 4(F)

Note that one has to make the following replacements in the energy dispersion relation:

=

R o o i)
E (K)> E.(ko-V) = o = Kox =i kyakoy—l@ ky > koz =i

The operator E'c (Eo - iV) is then:

2mxx 6){2 2myy 6y2 2mzz 622
The effective mass Shrodinger equation becomes:

hz 62 hz 62 hz 62 R _ .
o35 - —5+Ec+U(F)|g(F)= E ¢(r)
xx 0X myy oy 2m;; oz
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Donor Impurities in Semiconductors

One of the earliest applications of the effective mass theorem was the donor and
acceptor impurity states and energy levels in semiconductors

Consider a semiconductor (say GaAs) in which one Ga atom site is occupied by a Si
atom, as shown:

As Ga As Ga As

| | ne l | | « Silicon has one more electron in the
—Ga—As— Ga—As—Ga—AS  ,termost shell compared to Ga (4 in

| | | | Si compared to 3 in Ga)
—As—Ga— As__Ga—As—Ga

| | | | « Since only 3 electrons are needed to
—Ga—As— Si — As—Ga—As form co-valent bonds with the nearby

| | | | | As a_tt?ms, t_he extra_ electron does_ not

participate in bonding and can drift

—As—Ga— As—Ga—As—Ga away leaving behind a positively

| | | | | charged Si atom
—Ga—As— Ga—As—Ga—As
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Donor Impurities in Semiconductors: Effective Mass Equation

The positively charged Si atoms presents a Coulomb —Ga— As—Ga—

potential to the lattice. Therefore the potential energy is: | " | |
2 —As— Si —As—

Attractive positive potential: U(F) = _eiﬂ | | |
4z s |r| —Ga— As—Ga—

We need to figure out how the electron states and energy levels in | |
the conduction band are modified because of this Coulomb

potential A
[H +U(F) ]'/’(F)= E y(F) Energy

We are interested in how the states near the conduction
band bottom get modified, so we assume

V()= 4(F) v 5. o(F) :

And we know that the envelope function satisfies the
effective mass Schrodinger equation

=

[E.(k, - iv)+ U(F) |6(F) = E 4(F)
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Donor Impurities in Semiconductors: Effective Mass Equation

We seek a solution near the conduction band bottom at k, = 0 :
—Ga— As—Ga—

= [E.(-iv)+UF) |4(F) = E 4(F) L

The conduction band dispersion in GaAs implies: ——As— Si —As—

2,2 0 292 | | |
E(k)-E +TK Ecgﬁo/—iv)=Ec(—iV)=Ec—h v _Ga— As—Ga—
2m, 2m,

Energy

So we get the equation:

iy 0= 40

{_thz e? }¢(r) (E-E.)¢(F)

2m, Aregr g r

The above equation looks like the Schrodinger equation for an

electron in a hydrogen atom with the exceptions that:

i)The mass is the effective mass m, instead of the free-electron
mass m

ii)The dielectric constant is &; instead of &,
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Donor Impurities in Semiconductors: Hydrogenic States\
H2y2 e2 ~ —Ga— As
i |#0- £ |

2m, A4rmegr

Solutions are: | | |
¢(F) = @nim (f) = an(r)ylm(6’¢) —Ga— As_—_Ga—

Remember that the actual wavefunction is: ¥(F)= ¢(F) Ve ky=0 (F) | |

Where:
1) nisapositiveinteger>1 (n=12,......)
2) / isapostiveinteger<n (/=0/2,....(n-1) for s,p,d,f,....)
3) misaninteger suchthatim/<¢ (m=—/(,..-10,+1,....+ ()

The corresponding energy eigenvalues are:

E,
E—Ec_——g ——» n=1,23...... 2 2
n my,|( e
E, ° 2h2[4m9]
= E-= c~ 2 s
n
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Donor Impurities in Semiconductors: Hydrogenic States

2
e 2
E _ E _Me[ €
E=Ec—n—g n—1,2,3 ...... o th [4”85
A 2
Ground state (lowest energy state): = (1 3.6 eV)(&J S0
N m Es

= n=1 /=0 m=0
4 4reg | h?
=" 2 W
E=E.-E, e’ /m,

< £ m
=(0.53A)| = || —
¢1$ (F) = ¢n=1 /=0 m=0 (F) = /”1a3 e—r/ao ( ) (SOJ [me]

\_ Effective Bohr radius

In GaAs: m,=.067 m and g,=12.4 ¢,

2
E=E.-E,=E;- (1 3.6 GV{’;’:)(%J ~E,-5.9 meV

Es

Very large!

a, =(0.53 A) [ZSJ [”:] ~98 A
o e
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Donor Impurities in Semiconductors: Hydrogenic States

E
(13.6eV)(m,\ & Y 5.9 meV nergy
E=E—— o\ || B~ 73—

n m )\ &g

n
a, =(0.53 A) [2—5] [mﬂ] ~98A
o e

$15(F) = bt 10 m=o (F) = \/# e~/ ‘ ¥, 5.9 meV

Ga— >
| 1.42 evl K

o The positively charge donor atoms create
As— hew quantum states whose energies are
| slightly below the conduction band edge

T VP = ) ves o)
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Donor Impurities in Semiconductors: N-Type Doping

Energy

/ Donor

5.9 meV
+3 ionization

* At very low temperatures the electron resides in the
donor energy level and the donor atom is neutral

* At room temperature, the electron in the donor energy
level can acquire enough energy to jump to the
conduction band

When this happens the donor is said to have ionized

* Once in the conduction band the electron can move
around and is no longer localized at the donor atom

* Donor impurities can therefore be used to dope
semiconductors n-type
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—As—Ga— As—Ga—As—

—Ga—ﬁs— Ga—As—Ga—

—Ga—As— Ga— As—Ga—

T T

—As—Ga— As —Ga—

Acceptor Impurities in Semiconductors: P-Type Doping

Consider a semiconductor (say GaAs) in which one As
atom site is occupied by a carbon atom, as shown:

* C has one less electron in the outermost shell
compared to As (4 in C compared to 5 in As)

* Since 4 electrons are needed to form covalent bonds
with the nearby Ga atoms, the required electron is taken
from the valence band resulting in a negatively charged
C atom and a hole in the valence band

Solution: w(F) = ¢(F) ¥ hh,K,=0 (F)
= [Ehh(—N)+U(F) ]¢(F)= E ¢(F)

2
Negative repulsive potential: U(F)= +e7Q
Ar e |F|
2,2
hh-band dispersion: E,, (4)= E, - "k
2mhh
hZVZ

= Ehh(_iv)=EV+2m
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Acceptor Impurities in Semiconductors: P-Type Doping
The effective mass Schrodinger equation becomes:

2y2 2
{Ev+hv+ °

Rearrange:

hZVZ e2
|:_ 2mhh - 4r Es ‘F‘

E

-E+E, =—-—2
v nz

= E=EV+E—g
n

2mhh 4z Es ‘F‘

}¢(f)=(—s+sv)¢(f)

Again we end up with a Schrodinger-like equation for a
Hydrogen atom which has the solution:

¢(F) = Gnim (F) = Rn((r)Y/m (0’ ¢)

2 k
2
° 242 4reg Acceptor
states

}¢(f>=s¢(f)

-(13.6 ev)(%J [Z]z
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k

Acceptor
—\ ionization

Acceptor Impurities in Semiconductors: P-Type Doping

* Acceptor atom gives rise to hydrogenic energy levels
near the valence band maximum

* At very low temperatures the hole resides in the
acceptor energy level and the acceptor atom location is
overall neutral

* At room temperature, the hole in the acceptor energy
level can acquire enough energy to jump to the valence
band

When this happens the acceptor is said to have ionized

* Once in the valence band the hole can move around
and is no longer localized at the acceptor atom

* Acceptor impurities can therefore be used to dope
semiconductors p-type
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/ Energy

E, [ / Donor
d ionization

Sum of all probabilities
should equal unity: =

Donor lonization Statistics

In the grand canonical ensemble the probability of a
system to have total particles N and total energy E is:

P(N,E) = Ae (E-ENJKT
The donor level can have the following possible states:

1) No electrons present
P(IN=0,E=0) = A
2) One spin-up electron present
P(N=1E=E,) = Ae (Ea=Er)/KT
3) One spin-down electron present
P(N=1E=E,) = Ae (Ea Er)/KT

4) Two or more electrons present

P(N>1 E) -0 —s Coulomb repulsion
’ does not allow it

~(Eq-Ef)/KT | _ - 1
A[1+2e ] 1= A 122 o-Ea-EJKT

—
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/ Energy

edY) Donor
ionization

Acceptor

E -
ﬁ —\ ionization

Donor lonization Statistics

Probability that the _ Probability that the
donor level is ionized ~ donor level has no
electrons
= P(N=0,E=0)
= A
1

142 e (Ea—Ef)/KT
If the total donor impurity concentration is N then the
concentration of ionized donors N*; is equal to:

N+ — Nd
1+2 e_(Ed _Ef )/KT

For acceptors we have a similar relation:

- N,
N; = 1+ 2 o(Ea-EfJKT /

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

11



Carrier Statistics in Doped Semiconductors

Consider a semiconductor that is doped

Energy with both donor and acceptor impurity
atoms
Donor « The total charge must be zero:
_) ionization

p Nj-N;+p-n=0

The above equation can be used to find the
£, Acceptor position of the equilibrium Fermi level
ionization since every term depends on the Fermi
level position (one equation in one
unknown)

Ny

1 + 2 e_(Ed _Ef)/KT
Na

1+2 e(EaEr)KT

N =

N2
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