Handout 23

Electron Transport Equations

In this lecture you will learn:

* Position dependent non-equilibrium
distribution functions

* The Liouville equation

* The Boltzmann equation

* Relaxation time approximation

* Transport equations

William Schockley
(1910-1989)
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Note on Notation
In this handout, unless states otherwise, we will assume a conduction band
with a dispersion given by:
_ - 1=
E(k)=E, +o KT MK

= \7(*)= M'.nk

In the presence of an electric field:

=

E(k,7)= Ec(f)+§l?r M

where:

VE.(F)=eE
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Position Dependent Non-Equilibrium Distribution Function

We generalize the concept of non-equilibrium distribution F

functions to situations where electron distributions could o
also be a function of position (as is the case in almost all °
electronic/optoelectronic devices): f(— t)

f(k,7,t)

The local electron density is obtained upon integration over | k
k-space: _
n(F,t) = 2x j’ ( )d f(k,F,t)

Local Equilibrium Distribution Function:

Electrons at a given location are likely to reach thermal equilibrium among
themselves much faster than with electrons in other locations. The local equilibrium
distribution function is defined by a local Fermi-level in the following way:

= 1
f\k,r,t)= = -
°( r ) 1+ e E’FE(FO)KT
with the condition that the local Fermi level must be chosen such that:
. de% . .
n(F,t)=2x [ (k,r,t) (k,r,t)
( )" rez (27)°
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Case of No Scattering: Liouville Equation

Question: How does the non-equilibrium distribution function behave in time in
the absence of scattering?

r . Consider an initial non-equilibrium
5 distribution 2d dimensions at time “t 7, as
~ 3’ shown
flk,7,t AV
( ) f(k’ rt+ At) There is also an applied electric field, as

| p> shown

In time interval “At” each electron would have moved in k-space according to the
dynamical equation:

d nk(t) E .
e —-e k(t + At) = final momentum value

k(t) = initial momentum value
But in the same time interval “At” each electron would have moved in real-space
according to the equation:

d r(t) (k(t)) F(t)=initial position value
F(t+At)=final position value
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Case of No Scattering: Liouville Equation

; . dnk(t) g
o dt
TN n
flk.r.t) ...f(I?,F,t+ At) d :,ft) = vlk(®))
| k

The distribution at time “t+At ” must obey the equation:

f(K(t + AL), (£ + At), t + At) = F(K(2), F(t),t)

This is because in time “At “ the electron with initial momentum R(t) and position F(t)
would have gone over to the state with momentum k(t + At) and position F(t + At)

f(k(t+ At),F(t+ At),t+ At) = F(K(¢), F(t),t)

= f(k+°6$t)At,f+‘Z(tt)At,t+At]=f(R,F,t+At)
= f(E,F,t)+V,;f(R,F,t).‘"jlg)Anvff(E,f,t).dz(:)At+af(’:;’tf’t)At f(k,7,t
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Case of No Scattering: Liouville Equation
F d nk(t) _WE

e ot eE
. _ ~ s’ .
flk.r.t) f(k,7,t+ At) d;ft) = v(Kk(t)
| K
We have:

- -\ dk(t -\ dF(t of\k,r,t -
f(k,7,t)+ v (K, F,t). #Anvff( JFot). ;(t Jat+ (6t’ Jat- f(k,7,t)
The above equation implies that the underlined term must be zero:

ork.r.1) (':;t hY), g K7 ). —dﬁ?) +V#(K,7,t). dz gt) =0 conmtion
T t) 5 67.). 50, 5, 1(s 1.t) o(R) -

Describes the deterministic evolution of electron distribution in k-space
and real-space
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Boltzmann Equation: Liouville Equation with Scattering
= No Scattering B With Scattering
r r L]
- f(k .F}A SN
f(k,7,t+At) o /\ f(k, 7.t +At)

\

Now we have:

f(k(t+ At),F(t + At), t + At) = F(k(¢), F(t),t )+ { changes due to scattering JAt

= %’tf’th ka(l?,F,t). ? +v£(k,7,t). ¥(k) = { changes due to scattering}
N— — - ~ g

Deterministic evolution Non-deterministic evolution

k Boltzmann’s
L ;
equation
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/ Boltzmann Equation: Relaxation Time Approximation
of(k,7,t) k
ot

+ V,;f(l?,?,t). +v;£(k,7,t). ¥(k) = { changes due to scattering}

Local Equilibrium:

 Scattering is local in space - i.e. electrons at one location do not scatter from
impurities, defects, phonons, and other electrons that are present at another location

» Scattering restores local equilibrium — i.e. it drives the distribution function at any
location to the local equilibrium distribution function at that location

{ changes due to scattering}=— [ f(R’F’t)_ f°(E’F’t) ]

T
Note that:  n(F,t)=2x | dd’i f(k,7,t)=2x | L’i £, (K, 7,t)
FBZ (27) FBzZ (27)

S| 6L, grer,). 2O (i) ofe) - - LTl rt))

Boltzmann equation in the
relaxation time approximation
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Transport Equations: Continuity Equation
Boltzmann equation can be manipulated to give simpler transport equations
15, 7,t). o(f) = - LFEF )= fo(.F.1)
T

of\k,r,t
Integrate LHS and RHS over k-space, multiply by two, and use:
; d% (. . d% (.
n(r,t)=2x | flk,r,t)=2x | —— f\k,r,t
.0 rBz (27)7 ( ) rBz (27)7 °( )

d
JFD=2(-e)x | (‘2’”;; (k. 7,t)v(K)
d k k —
) He {0

to get:
on(r,t) _ 1V. J(F,t)=0 [ Continuity equation
k ate /
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Transport Equations: Current Density Equation \

(ssume DC applied electric field and steady state: {dhl?(t) ——eE
dt
; ,F,t).v(l?)=_[f("’f")—rfo( t) ]

0
o a,tf,t +V (k7 t) d’;gt) v:f(k
= -0 v,(kr). £ v,r(fr).o(f)- -LEr)-Tolkor
= 0 V,f(f.r). E -9, 1(k 7). v(R)= (ko)1 (5.7)
= f(K,F)=£,(K,F)+ e v £(K,F). E -z v£(k,F). v(K)
Assumption:
Since the difference between f I?,F and fo(l?,F) will be of the order of the applied
field, it is safe replace f(E,F) by f, ﬂ, F) on the RHS in the above equation:
= f(k,F)~ £, (k,F)+ e V oo (K, F). E =2 V£, (K,F). v(K) /
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Transport Equations: Current Density Equation
= f(k,F)~ £, (K, 7 )+ o V oK, F). E—7 V.5, (K,F). v(K)

Multiply both sides by 2 (—e) V(E) and integrate over k-space to get:

LHS: d% N
2(-e)xFBZ( e f(k,7)v(K)
= J(F)
RHS: o 1
First note that: f, (k,r)= 12 B E KT
= V; (k7). —(*F%g_’)v [E.(F)- E/(P)]. 1 V4E(K)
1

= Vifolk.7). vy [E0(F)- E¢(F)]

Therefore the RHS can be written compactly as:

2o | o )d{ £ (k. 7)+ v (K. 7). [h’:;-_%vf [EC(F)—Ef(F)]]}\?(E)
~2(-e)x %:;“d (hef—;vf (£.(7)- £/ b7 ) v(8)
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Transport Equations: Current Density Equation

~2-e)x | ("”;;f[k SB[ ()- E ) v(R)

=2(-

£, (k.7)v [E—75+ v, [E.(F)- Ef(r)]j
For the conductlon( band of a semiconductor with parabolic dispersion:
v(k)=m" .1k
The RHS becomes 0

2e)s [ o o)A )]

- n(F)e?r M, [E‘—EV,[EC(F)— Ef(F)]] -5.E-15 .,[E.(F)-E:F)]

Finally putting together the LHS and the RHS we get:

JiF)=5. (E - gV;[Ec(F)— Ef(F)]) L, Current density equation
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Current Density and the Fermi Level (Chemical Potential)

The expression for the current density is:
e = (2 1 = =
)= .(E- 29, [E()-EP)]

Therefore, currents can flow as a result of both potential gradients and Fermi-level
(or chemical potential) gradients

Since:
VE,(F)=eE

We get:

Therefore, currents flow ONLY as a result of gradients in the Fermi level (or the
chemical potential)
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Transport Equations: Drift and Diffusion

The current density equation:
oy = (& 1 = "
)= .(E- 29, [E()-EP)]

can be cast in one more form that is more common

We start by relating the gradient in the Fermi level to the
gradient in the carrier density:

d%

n(F)= 2xFéZW f,(k, )
= Ven(r)-2x éz(‘z’gj Vito(fr)-2x | (‘2';';, Holkr)y, (e, (¢)-£,0)

(2 L —ﬂ@]vftscm—sf(f)]

rBz (27)° oE
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Transport Equations: Drift and Diffusion

The expression for the current density becomes:

s o= 1 ~ "
J(r)=a.E—ga.V;[Ec(r)—Ef(r)]
_ =1 o ~
=0c.E+— — — .Ven(r
e, . d% (_af, k,F] rn(F)
rBz (27)° oE
J(F)=5.E+eD .V;n(F) Current density equation
Where we have the defined the diffusivity tensor as:
D= 1 o ) ;
T e? dj k 7 g =n(F)e“c M~
¢, d IL[_afo!k,rj] (Fle
rez (27) oE

The current density equation shows that current can result from drift when there is
an electric field (the first term on the RHS) and also by diffusion if there is a carrier

density gradient (the second term on the RHS)
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Diffusivity, Conductivity, and Mobility - |
We define the mobility tensor as:
g=er M { g(F)=n(F)en

Einstein Relation:
Conductivity and diffusivity are related by the Einstein relation:

ﬁ— 1 o
T a2 di i 7
¢, d I:'j[_afo‘k,r)]
rBz (27) oE

Example - Semiconductors:
Consider a semiconductor at high temperatures and assume that Maxwell-Boltzmann

statistics apply:
1 (e(e =
~e (E(k)‘Ef(’))/KT { Ec —E; >> KT

k)= e~
Then:
2 d [_afogk,fj]_@

FBZ (27[)d OE - KT
and the Einstein relation can be expressed as:

1 &  KT[ . 4 KT_
= =— M =
e2 n(F)/KT e [er ] e

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University

o




Diffusivity, Conductivity, and Mobility - Il

Example - Metals:

Consider a metal or a highly doped semiconductor at low temperatures.
Then:

llr). s(e(6)- ;)
And: (
d% ( of,(k,F)) _
oz @) (— SE ] = gap (Er)

and the Einstein relation becomes:

p-1_9°

e? gap(Ef

~—|
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