Handout 22

Electron Transport: The Boltzmann Equation

In this lecture you will learn:

* Non-equilibrium distribution functions

* The Liouville equation
* The Boltzmann equation

* Relaxation time approximation
» Scattering beyond the relaxation time

approximation

Ludwig Eduard Boltzmann
(1844-1906)
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Note on Notation

In this handout, unless states otherwise, we will assume a conduction band

with a dispersion given by:

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University




Momentum Equation with Scattering and Problems
In any energy band the electrons obey the dynamical equation:

drk(t) _ . g
dt

In the presence of scattering, we wrote:
dnk(t) _ _, g _("1k(t)-nk
dt T

* We need a more general and rigorous description of electron scattering than is
captured by adding damping to the momentum equation

E N

hk
~/ Electron scattering . >

Example: Electron
—1 L E scattering from fp/ I \/

impurity/defect

k
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The Non-Equilibrium Distribution Function

In thermal equilibrium, the electron distribution (or the electron occupation
probability) is given by the Fermi-Dirac distribution:

- 1
olk)=, Jewrer
And the electron density can be written as:
di
n=2x | 9K ¢ (k)
rBz (27)

We generalize this concept to non-equilibrium situations (which happen, for
example, when electric fields are applied from outside)

The electron distribution (or occupation probability) more generally is given by a
time-dependent distribution function:
f(k,t)

that also obeys:

oy Ak
n=2 FéZ(ZII)d (k,¢)
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The Non-Equilibrium Distribution Function

Consider a single electron state in k-space in the presence of an electric field

Assume no scattering

dnk(t) = Y
“at - °F : . \
\

= k(t)=k(t =0)- %E‘t —> k(t

. k(t+At)
:>I?(t+At)=I?(t=0)—%E'(t+At) | K,
E
Suppose there exists a time dependent ky R
function f(k,t) that gives the probability f(k(t ,t)
of electron occupying any state in k-space '\
= F(K(t + At),t + At)= F(K(£), t) k(e + At) t+At)
kX

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Case of No Scattering: Liouville Equation

Question: How does the non-equilibrium distribution function behave in time in
the absence of scattering?

ky . ® E Consider an initial non-equilibrium
H3 \ distribution at time “t ”, as shown
Kk we There is also an applied electric field, as
f(k, t) f(k’ t+ At) shown
| ke

In time “At ” each electron would have moved according to the dynamical equation:

dnk(t) = k(t) = initial momentum value
dt k(t+ At) = final momentum value

The distribution at time “t+At ” must obey the equation:

f(k(t+at), t + At) = F(k(t),t)

This is because in time “At “ the electron with initial momentum E(t) would have
gone over to the state with momentum k(t + At)
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Case of No Scattering: Liouville Equation
y . ® V\E
a st d nk(t) _

flk.t) F(K,t+At) dt

-eE

We have: f(k(t+At),t + At)= F(k(t),t)
= f(k(t)+ dk(t) At,t+AtJ = f(R(t), t) —_— {E(t) is arbitrary
f(l?+ d’;(t)At t+At] f(K,t)

o ) vyrlir). OO a2

The above equation implies that the underlined term must be zero:

aff’}t, t)+ VEf(E,t). dl;gt) =0 Liouville equation

Describes the deterministic evolution of electron distribution in k-space
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Boltzmann’s Equation: Liouville Equation with Scattering

No Scattering With Scattering

: " / |

f(E,t+At) f(E,t) / :o\ f(R,t+At)

Now we have:

f(k(t+ At),t + At)= F(k(t),t)+ { changes due to scattering}At

= f(l? + %Y)At, t+ At) = f(E, t+ At)+ {changes due to scattering}At

= f(I?,t)+ ka(l?,t) dk(t) At + MM = f(l?,t)+ { changes due to scattering}At

dt ot
S|t g (K, t). dk(t) ={changes due to scattering} — Boltzmann’s
ot dt equation
A\ J A - g
" ~"
Deterministic evolution Non-deterministic evolution
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Relaxation Time Approximation
Suppose no external fields are applied: E = 0 ~

The initial non-equilibrium distribution is given: f(k,t = 0)

Scattering must eventually restore the equilibrium distribution function

v (K.t = 0) v k.t =)= 1(k)

—

_ _ 0
Mg‘;’t)+ka(l?,t%{ changes due to scattering}

- 6fal:,t ={changes due to scattering}

Scattering must “relax” the non-equilibrium distribution to the equilibrium Fermi-
Dirac distribution at time t =«

Question: What should be the form of the expression on the RHS in the Boltzmann
equation so that equilibrium Fermi-Dirac distribution is indeed restored at time t = «
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Relaxation Time Approximation

Case I:

Suppose no external fields are applied: E=0 -
The initial non-equilibrium distribution is given: f(k,t = 0)

“ 1 flk,t=0) F(k,t = )= £, (K)

-

In the relaxation time approximation, the RHS is assumed to be as follows:

6fo:,1‘) ={changes due to scattering}= _M

of(k,t) [k, 1)-£,)]

ot T

Solution is: f(E,t): f(l?,t = 0) ety fo(l?) l 1-e77 J

As t > o , f(k,t)—) fo(E)
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DC External Electric Field

When the external field is not zero, than we get:

orlkot), o o(k,q). 0O __[#lk.0)-1,(6)]
ot dt

T

Casel ll:

Suppose a DC external field is applied: E
The steady state distribution function is desired

Since: m = _ﬁ
dt /1
and since in steady state the distribution function cannot depend on time, we have:
70 _ . -
of _ka(ﬁ)_£=_| f!k!—f,,!k!
ot h T

erE

= f(k)=1f,(K)+vFK).

We will keep terms that are linear in the applied field (assuming the applied field is
small) and so the distribution in the second term on the RHS can be approximated
by the equilibrium distribution:

f(l?)z fo(l?)+ VEfo(I?).e ;E- Final answer
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DC External Electric Field
erE

The final answer: f(k)z fo(E)+ \v Efo(k)_ 1t two terms of a

Taylor expansion

—

can also be written approx. as: f(R)z fo(k + e ;E] Shifted equilibrium

distribution
Initial Distribution Steady State Distribution
ky
f(k,t =0)=1f,(k)
kX
E
—

Shifted equilibrium distribution
SAME AS BEFORE!

Everything from here onwards is the same as discussed earlier...............
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DC External Electric Field

Steady state distribution: £(k)~f,| K+ % E ______ shifted equilibrium
/] distribution

Elastic scattering

Steady State Distribution (no energy loss)

f(k,t=oo)=fo[k+”E E

J -

h 77 ISx._ Electron

_,_C * scattering / Electro.n
= ) 7) scattering

E

—] I
T /I kX
S—L

—E

Inelastic scattering
(energy loss)

—
ECE 407 - Spring 2009 - Farhan Rana — Cornell University

DC External Electric Field — Current Density

f(ﬁ)zf,,(ﬁ)wﬁf,,(g).efzfo[w; E]

Example: Consider the conduction band of a semiconductor with the following
dispersion:

E(E):Ec+§ET.M‘1.E v(k)=m".nk

The current density becomes:

Jo2ex | 0K (@Q)o(R)=—2ex | 3K f[lheTEJV(R)

rBz (27)? Bz (27)7 ° h
d%% N (-~ erE d%% =\ poq ~ erE

=-2ex | ——f\k)V| k- =-2ex | f, M~ .h k-

rBz (27)7 o(k) [ h J rBz (27)7 o(K) h

.
2 d°k . (i\p—1 E

=e“rt 2x | —f, M .E

rBZ (27)° °( )
=ne’ M. E
=5 .E
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Scattering Rates
Consider a single electron state in k-space:

ky R,MOR'

\0

| by

The electron in the initial state k _can scatter to another state k' witha
scattering rate given by W(k - k') due to phonons, defects, impurities, etc.

But to get the actual transition rate one must weigh W(E - R') by the probabilities
that the final state is empty and the initial state is occupied:
Rlk — k')=w(k — k') flk,t)1- (", t)]

Total transition rate out of the state k:
TRk > k')=xwWlk - k') flk,t) 1- (k" t)]
k' k'

Total transition into the state K :
SR(k'— k)=3w(k — k)f(k',t)1-f(k,¢)|
k' k'
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Boltzmann Equation: Beyond the Relaxation Time
Approximation

.t?:o ~
k) S fletear)
| -
6f(l?,t)+v,f(,; t) @— { changes due to scattering}
ot KADET gt g ’

The term that represents the changes in the distribution due to scattering can be
written as:

oMet) g r(r,0). 2O _ s> R} (i) 1- (ko)

ot ' - N
~sw(k > R) (ko) -1k o] ~f- L6016
I's T
W(R - E') is the rate of scattering of an electron from momentum state k to k'
due to impurities, defects, phonons, etc. The RHS can be shown to reduce to the
relaxation time approximation expression in many cases of practical interest.

£l
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Boltzmann Equation: Beyond the Relaxation Time
Approximation

dk(t) _ %W(I?'—) K)f(k,¢)[1- (i, )]

- %w(ﬁ - &) fli,t) [1- (k" 1)] Energy

of(k,t)
ot

+Vf(K,t).

Assume thermal equilibrium:

ho)=rnk) Mg
Therefore:

. e - - E(k)KT Scattering rate to lower
= W(A - ki)= fo k) 1- fak = e (‘) —> energy states is larger than
W( - k) 1—fo(k') fo\k eE(k JKT scattering to higher energy
states
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Exam 1: Results
4
AVG: 70
STD DEV: 13

Number of Students
N <

—

10 20 30 40 50 60 70 80 90
Score
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