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Handout 21

Phonon Thermal Statistics and Heat Capacities

In this lecture you will learn:

• Phonon occupation statistics
• Bose-Einstein distribution 
• Phonon density of states in 1D, 2D, and 3D
• Phonon thermal energy and heat capacity of 
solids

Peter Debye
Born: 1884 (Netherlands)
Died: 1966 (Ithaca, NY)
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A Single Lattice Wave Mode
Consider the Hamiltonian of just a single lattice wave mode:
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Its eigenstates, and the corresponding eigenenergies, are:
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The state        corresponds to “n” phonons in the lattice wave moden
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A Single Lattice Wave Mode in Thermal Equilibrium

In thermal equilibrium, let P(n) be the probability that there are “n” phonons in this 
lattice wave mode

P(n) must be related to the energy corresponding to the “n” phonons:
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Thermal Equilibrium

P(n) must be normalized properly:
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Bose-Einstein Distribution
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The probability distribution given by,

is called the Bose-Einstein distribution

Average Phonon Number:

One can calculate the average phonon number in equilibrium:
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Average phonon number in any lattice wave mode depends on the phonon energy

Limiting Cases:
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Classical Equipartition Theorem

Every independent quadratic term in position or momentum in the expression for 
the energy of a system has an average value equal to KT/2 at temperature T

• Only holds when classical statistics apply - which is generally the case at high 
enough temperatures

Example: A Classical Simple Harmonic Oscillator in 1D

Example: A Free Particle in 1D
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Example: A Free Particle in 3D
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Example: A Single Lattice Wave Mode of a 1D Crystal
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Acoustic Phonons in 1D: Density of States
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Consider acoustic phonons in a N-primitive-cell 1D crystal 
of length L:

First we need to figure out how to convert a summation 
over all lattice wave modes of the form:

into an integral for the form:
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Acoustic Phonons in 1D: Density of States

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Now we need to figure out how to convert an integral 
of the form:

into an integral over frequency of the form:
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We need to know the dispersion of the phonons. We approximate it by a linear function:
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The density of states function g1D() is the number of phonon modes per unit 
frequency interval per unit length:
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Density of states
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Acoustic Phonons in 1D: Debye Frequency

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We know that:

Since:
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It can be verified that (1) above holds

The frequency D is called the Debye frequency (after Peter Debye – Cornell 
University). It is chosen to ensure that the total number of phonon modes are 
conserved when going from q-space integrals to frequency domain integrals. In 1D 
this is automatic.

(1)
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Acoustic Phonons in 2D: Density of States

Consider acoustic phonons in a N-primitive-cell 2D 
crystal of area A

We need to go from a q-space integral to a 
frequency integral:
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We need to know the dispersion for the 2 acoustic 
phonon bands. We assume that for both phonon 
bands the dispersion is linear:

 TALA,  for  2,1   qv
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For each phonon band we get:

The question is what is D ?

 
22

2 

v

g D 



TA

LA

 LAD

 TAD

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Acoustic Phonons in 2D: Debye Frequency

To find D we count and conserve the total number of phonon modes in each band:
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Each phonon band has a different Debye frequency
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Acoustic Phonons in 3D: Density of States

Consider acoustic phonons in a N-primitive-cell 3D crystal of volume V

We need to go from a q-space integral to a frequency integral:
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We need to know the dispersion for the 3 acoustic phonon bands. We assume that 
for all 3 phonon bands the dispersion is linear:

 TATA,LA,  for  3,2,1   qv
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Acoustic Phonons in 3D: Debye Frequency

To find D we count and conserve the total number of phonon modes in each band:

31
32

22

3

0
33

2

FBZ in 

6

6

2















V
N

v

N
v

V

N
v

dV

N

D

D

q

D



















Each phonon band has a different Debye frequency

Silicon Phonon Bands

Silicon:

In Silicon the TA phonon velocity is 5.86 km/s. The corresponding Debye 
frequency is 13.4 THz. The LA phonon velocity is 8.44 km/s. The corresponding 
Debye frequency is 19.3 THz. 
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Acoustic Phonons in 3D: Thermal Energy

Consider acoustic phonons in a N-primitive-cell 3D crystal of volume V

Also assume that all three acoustic phonon modes have 
the same velocity (for simplicity) 

 TATA,LA,  forqv
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Then for each phonon band we have:

The energy u of the lattice per unit volume at 
temperature T can be written as:
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Acoustic Phonons in 3D: Thermal Energy 
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Acoustic Phonons in 3D: Debye Temperature

The low temperature limit:

can also be written as:

Where D is the Debye temperature:

DKT 

DT 

K
D

D
 





D

yq

xq



D



D

yq

xq

LA
TA
TA

The Debye frequency thus defines a natural temperature scale for the phonon 
energetics
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Silicon Heat Capacity

Silicon Phonon Bands
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Silicon Heat Capacity

3TC 

In silicon where the Debye frequency for TA phonons is 
13.4 THz, the corresponding Debye temperature is 643 K. 
The Debye frequency for LA phonons is 19.3 THz and the 
corresponding Debye temperature is 926 K 

The T3 law for heat capacity holds well in Silicon for 
temperatures less than 50 K (much less than the Debye 
temperature of any phonon band)
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Acoustic Phonons in 3D: Classical Equipartition Theorem

Case II: DD TKT   
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Physical explanation: There are N/V phonon modes per band per unit volume and 
each mode has energy equal to KT as per the classical equipartition theorem
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Silicon Heat Capacity

Silicon Phonon Bands
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Silicon Heat Capacity

The Heat capacity approaches 3(N/V)K as the temperature 
exceeds the Debye temperature of all acoustic phonon 
bands
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Optical Phonons in 1D: Einstein Model and Density of States
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Let the optical phonon frequency be  qLO
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We know that:

We suppose that all optical phonon modes in FBZ have the same 
frequency          (i.e. the phonon band is completely flat - Einstein model):LO
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Consider optical phonons in a N-primitive-cell 1D crystal of length L

LO
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Optical Phonons in 2D and 3D: Einstein Model

Silicon Phonon 
Bands

TA/TA

TO/TO

For each optical phonon band we want to be able to write:
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Consider optical phonons in a N-primitive-cell 2D (or 3D) crystal of area A (or 
volume V)

We suppose that each optical phonon band is completely flat 
and every phonon mode in a band has the same frequency 

         
V
N

g
A
N

g DD 32 or



On can check that the number of phonon modes per 
band is conserved:
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 TOTO,LO,  for  3,2,1  
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Heat Capacity of Optical Phonons in 2D: Einstein Model

Consider a material with two atoms per primitive cell in 2D 
 There must be 2 optical phonons bands in 2D (LO and TO)

Suppose the optical phonon frequencies are          and        . Assuming Einstein model:       LO TO
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Total energy per unit area in both the optical phonon modes is: 
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The heat capacity is:
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Appendix: Classical Equipartition Theorem

According to the canonical ensemble of statistical physics, a system at temperature T
will have energy E with the probability given by:

  KT

E

e
Z

EP



1

The constant Z is determined by adding the probabilities for all possible states of the 
system and equating the result to unity

1D Example: Consider a free particle in 1D with the energy given by:

m
p

E x

2

2



The probability that the particle at temperature T will have momentum px is then:  

  KT

mp

x

x

e
Z

pP
22

1 


We must have:

  mKTZpPdp xx 21 



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Appendix: Classical Equipartition Theorem

So we finally have for the probability distribution of the particle momentum:

  KT

mp

x

x

e
mKT

pP
22

2
1 




The average energy of the particle is then:

  KTpP
m

p
dp x

x
x 2

1
2

2






General Proof:

Consider a system whose total energy can be written in terms of various 
independent momenta and displacements as follows:


j

jj
j

jj ubpaE 22

The probability that the system will have some specific values for all the displacements 
and momenta is:

  KT

ubpa
j

jj
j

jj

e
Z

uuppP






22

1
,.....,,......, 2121
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Appendix: Classical Equipartition Theorem

The constant Z is determined by requiring:

  KT

ubpa
j

jj
j

jj

e
Z

uuppP






22

1
,.....,,......, 2121

      1,.....,,......, 2121  



uuppPdudp r

r
j

j

It then follows that the average value of any one particular quadratic term in the 
expression for the total energy of the system is:

     

      KTuuppPubdudpub

KTuuppPpadudppa

nnr
r

j
j

nn

nnr
r

j
j

nn

2
1

,.....,,......,

2
1

,.....,,......,

2121
22

2121
22

 

 









The above results follow from the properties of standard Gaussian integrals


