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Handout 2

Sommerfeld  Model for Metals – Free Fermion Gas

In this lecture you will learn:

• Sommerfeld theory of metals 

Arnold Sommerfeld (1868-1951)
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• Does not say anything about the electron energy distribution in metals
- Are all electrons moving around with about the same energy?

• Does not take into account Pauli’s exclusion principle

To account for these shortcomings Sommerfeld in 1927 developed a model for 
electrons in metals that took into consideration the Fermi-Dirac statistics of 
electrons

Note added: 

Six of Sommerfeld’s students - Werner Heisenberg, Wolfgang Pauli, Peter Debye, 
Hans Bethe, Linus Pauling, and Isidor I. Rabi - went on to win Nobel prize in 
Physics.

Sommerfeld himself was nominated 81 times (more than any other person) but 
was never awarded the Nobel prize.
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Quantum Mechanics and the Schrodinger Equation

The quantum state of an electron is described by the Schrodinger equation:
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The time independent form of the Schrodinger equation is:
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Schrodinger Equation for a Free Electron
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The time independent form of the Schrodinger equation is:

For a free-electron: � � 0 rV
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We have:

Solution is a plane wave (i.e. plane wave is an energy eigenstate):
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Energy:

The energy of the free-electron state is:
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Note: The energy is entirely kinetic (due to motion)

Momentum:
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Electrons in Metals: The Free Electron Model

The quantum state of an electron is described by the time-independent 
Schrodinger equation:
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Consider a large metal box of volume V = Lx Ly Lz : 

xL
yL

zLIn the Sommerfeld model:

• The electrons inside the box are confined in a 
three-dimensional infinite potential well with zero 
potential inside the box and infinite potential 
outside the box

• The electron states inside the box are given by 
the Schrodinger equation
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free electrons 
(experience no 
potential when inside 
the box)
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Electrons in Metals: The Free Electron Model
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With the boundary condition that the wavefunction           is
zero at the boundary of the box
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And n, m, and p are non-zero positive integers taking values 1, 2, 3, 4, …….
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Normalization:

The wavefunction is properly normalized: � � 123  ³ rrd k
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The energy of the electron states is:
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Note: The energy is entirely kinetic (due to motion)
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Electrons in Metals: The Free Electron Model
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Labeling Scheme:

All electron states and energies can be 
labeled by the corresponding k-vector
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k-space Visualization:
The allowed quantum states can be 
visualized as a 3D grid of points in the 
first quadrant of  the “k-space”
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Problems:

• The “sine” solutions are difficult to work with – need to choose better solutions
• The “sine” solutions come from the boundary conditions – and most of the 
electrons inside the metal hardly ever see the boundary

n, m, p = 1, 2, 3, 4, …….
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Born Von Karman Periodic Boundary Conditions
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Instead of using the boundary condition: � � 0boundary  r
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Use periodic boundary conditions:
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The boundary conditions dictate that the allowed values of kx , ky , and kz, are such 
that:
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Born Von Karman Periodic Boundary Conditions
Labeling Scheme:

All electron states and energies can be labeled by the corresponding k-vector
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Momentum Eigenstates:

Another advantage of using the plane-wave energy eigenstates (as opposed to the 
“sine” energy eigenstates) is that the plane-wave states are also momentum 
eigenstates

Momentum operator: � 
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Normalization: The wavefunction is properly normalized: � � 123  ³ rrd k
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Orthogonality: Wavefunctions of two different states are orthogonal:
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States in k-Space
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k-space Visualization:
The allowed quantum states states can be 
visualized as a 3D grid of points in the entire 
“k-space”
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Density of Grid Points in k-space:

Looking at the figure, in k-space there is only one grid point in every small 
volume of size:
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result

n, m, p = 0, ±1, ±2, ±3, …….



6

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Electron Spin

Electron Spin:

Electrons also have spin degrees of freedom. An electron can have spin up 
or down. 

So we can write the full quantum state of the electron as follows:
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The energy does not depend on the spin (at least for the case at hand) and 
therefore
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For the most part in this course, spin will be something extra that tags along 
and one can normally forget about it provided it is taken into account when 
counting all the available states 
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The Electron Gas at Zero Temperature - I
• Suppose we have N electrons in the box. 

• Then how do we start filling the allowed quantum states? 

• Suppose T~0K and we are interested in a filling scheme 
that gives the lowest total energy.
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The energy of a quantum state is:
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Strategy:
• Each grid-point can be occupied by two electrons 
(spin up and spin down)

• Start filling up the grid-points (with two electrons 
each) in spherical regions of increasing radii until 
you have a total of N electrons

• When we are done, all filled (i.e. occupied) 
quantum states correspond to grid-points that are 
inside a spherical region of radius kF

Fk
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Fermi sphere

• Each grid-point can be occupied by two electrons (spin 
up and spin down)

• All filled quantum states correspond to grid-points that 
are inside a spherical region of radius kF

Volume of the spherical region = 

Number of grid-points in the spherical region = 
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But the above must equal the total number N of electrons inside the box:
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The Electron Gas at Zero Temperature - II
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Fermi sphere

• All quantum states inside the Fermi sphere are filled (i.e. 
occupied by electrons) 
• All quantum states outside the Fermi sphere are empty

Fermi Momentum:
The largest momentum of the electrons is:
This is called the Fermi momentum
Fermi momentum can be found if one knows the electron 
density:
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Fermi Energy:
The largest energy of the electrons is:

This is called the Fermi energy EF :
m
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Fermi Velocity:
The largest velocity of the electrons is called the Fermi velocity vF :
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The Electron Gas at Zero Temperature - III
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The Electron Gas at Non-Zero Temperature - I
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• Since T≠0K, the filling scheme used for T=0K will no longer 
work

• For T≠0K one can only speak of the “probability” that a 
particular quantum state is occupied

Suppose the probability that the quantum state of 
wavevector     is occupied by an electron isk

& � �kf
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Then the total number N of electrons must equal the following sum over all 
grid-points in k-space:
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spin

• By assumption          does not depend on the spin. That is why spin is taken 
into account by just adding the factor of 2 outside the sum

•           can have any value between 0 and 1
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of k-space

� So in volume                           of k-space the number of 
grid points is:         

zyx dkdkdk

� � � �
kdVdkdkdkV

zyx
&3

33 22 SS
 

xk

yk

zk

zdk xdk

ydk

� The summation over all grid points in k-space can be replaced by a volume integral 

� �³o¦ 3

3

  all 2S
kdV

k

&

&

Therefore:

� �
� �

� �kfkdVkfN
k

&
&

&
& ³u ¦u 3

3

  all 2
22

S

The Electron Gas at Non-Zero Temperature - II

Question: What is           ?� �kf
&
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The Fermi-Dirac Distribution - I
A fermion (such as an electron) at temperature T occupies a quantum state with 
energy E with a probability f(E-Ef) given by the Fermi-Dirac distribution function:
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EEf ��

 �
1

1

Ef = chemical potential or the Fermi level (do not confuse Fermi energy with Fermi level)
K = Boltzmann constant = 1.38 X 10-23 Joules/Kelvin
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T >> 0K

~2KT

~2KT

0.5

0.5 The Fermi level Ef is determined by invoking 
some physical argument …(as we shall see)
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Distribution Functions: Notation

The following notation will be used in this course:

• The notation          will be used to indicate a general k-space distribution function 
(not necessarily an equilibrium Fermi-Dirac distribution function)

• The notation                   will be used to indicate an equilibrium Fermi-Dirac 
distribution function with Fermi-level Ef . Note that the Fermi-level is explicitly 
indicated. Note also that the Fermi-Dirac distribution depends only on the energy and 
not on the exact point in k-space 

• Sometimes the notations                     or             or            are also used to indicate 
equilibrium Fermi-Dirac distribution functions 
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The Electron Gas at Non-Zero Temperature - III
The probability          that the quantum state of wavevector     is occupied by an 
electron is given by the Fermi-Dirac distribution function:

k
&� �kf

&

� � � �� � � �� �fTKEkE
EkEf

e
kf

f
� 

�
 

�

&&
&

1
1

Therefore:

� �
� �

� � � �� � KTEkE fe

kdVkfkdVN
��

³u ³u &

&
&

&

1
1

2
2

2
2 3

3

3

3

SS

� � � �
m
k

m
kkk

kE zyx
22

222222
!!&

 
��

 Where:

Density of States:

The k-space volume integral is cumbersome. We need to convert into a simpler 
form – an energy space integral – using the following steps:
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The Electron Gas at Non-Zero Temperature - IV
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g(E) has units: # / Joule-cm3

The product g(E) dE represents the number of 
quantum states available in the energy interval 
between E and (E+dE) per cm3 of the metal
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Suppose E corresponds to the inner 
spherical shell from the relation:
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And suppose (E+dE) corresponds to the outer 
spherical shell, then g(E) dE corresponds to 
twice the number of the grid points between the 
two spherical shells
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EfE

� �Eg

The expression for N can be visualized as the 
integration over the product of the two functions:

The Electron Gas at Non-Zero Temperature - V
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� At T=0K (and only at T=0K) the Fermi level 
Ef is the same as the Fermi energy EF
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The Electron Gas at Non-Zero Temperature - VI
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For T ≠ 0K:

Since the carrier density is known, and does not change with temperature, the 
Fermi level at temperature T is found from the expression

In general, the Fermi level Ef is a function of temperature and decreases from EF as 
the temperature increases
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For small temperatures ( KT << EF ), a useful approximation is:
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Total Energy of the Fermion Gas

The total energy U of the electron gas can be written as:
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Equilibrium Current Density of the Electron Gas

In the Drude model we had:
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• But now we have a Fermi gas in which electrons move with different velocities

• The velocity of the electron with wavevector       is: k
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m
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So the current density expression can be written as:

In the sum, for every occupied state       there is a state           occupied with exactly 
the same probability. Therefore:
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Makes sense - metals do not 
have net current densities 
flowing in equilibrium
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Electron Gas in an Applied Electric Field - I
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• Now suppose there is an electric field inside the 
metal
• Also assume, as in the Drude model,  that the 
scattering time of the electrons is W and the 
scattering rate is 1/W
• The time-independent Schrodinger equation is a 
good point to start:
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The energy of the electron shows that its 
wavevector (and momentum) is increasing 
with time
The wavevector is now time dependent!

E
&

ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Electron Gas in an Applied Electric Field - II

• An equation for the time-dependent electron 
wavevector can be written as:
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Now we need to add the effect of electron scattering.
As in the Drude model, assume that scattering adds 
damping:
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Steady State Solution:

The boundary condition is that: � � ktk
&&

  0

Note: the damping term ensures that when the field is turned off, the wavevector of 
the electron goes back to its original value

� � Eektk
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In the presence of an electric field, the wavevector of every electron is shifted by 
an equal amount that is determined by the scattering time and the field strength
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Electron Gas in an Applied Electric Field - III
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Electron distribution in k-space 
when E-field is zero
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Electron distribution is shifted in 
k-space when E-field is not zero
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Distribution function: � �kf
&

Distribution function: ¸
¹
·

¨
©
§ � Eekf

&

!

& W

Ee &

!

W
�

Since the wavevector of each electron is shifted by the same amount in the 
presence of the E-field, the net effect in k-space is that the entire electron 
distribution is shifted as shown
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Electron Gas in an Applied Electric Field - IV
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Electron distribution is shifted in 
k-space when E-field is not zero
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Do a shift in the integration variable:
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Where:
m
en WV

2
 Same as the Drude result!

electron density = n
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