Handout 19

Lattice Waves (Phonons) in 3D Crystals
Group IV and Group llI-V Semiconductors
LO and TO Phonons in Polar Crystals
and
Macroscopic Models of Acoustic Phonons in Solids

In this lecture you will learn:

 Lattice waves (phonons) in 3D crystals
* Phonon bands in group IV and group llI-V Semiconductors

* Macroscopic description of acoustic phonons from elasticity
theory
« Stress, strain, and Hooke’s law
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Counting the Number of Phonon bands in 3D Crystals
Periodic boundary conditions for a lattice of N;xN,xN, primitive cells imply:
G =01 by+az by +as bs
ay=my/N; {where -N;/2 < my<N;/2
ay =my/N, {where -Ny/2<my,<N,/2
a3 =m3/N; {where -N3/2<m;<N;/2

=There are N,N,N, allowed wavevectors in the FBZ
=There are N,N,N; phonon modes per phonon band

Counting degrees of freedom and the number of phonon bands: Monoatomic Basis

* There are 3N,N,N; degrees of freedom corresponding to the motion in 3D of N,;N,N;
atoms
—=The number of phonon bands must be 3 (two TA bands and one LA band)

Counting degrees of freedom and the number of phonon bands: Diatomic Basis

* There are 6N,N,N; degrees of freedom corresponding to the motion in 3D of
2N,N,N; atoms

=The number of phonon bands must be 6 (two TA bands and one LA band for
coustic phonons and two TO bands and one LO band for optical phonons)
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Phonon Bands in Silicon

y

Silicon has a FCC lattice with two FBZ of Silicon
basis atoms in one primitive cell

=The number of phonon bands must be 6; two TA bands and one LA band for
acoustic phonons and two TO bands and one LO band for optical phonons /

ECE 407 - Spring 2009 - Farhan Rana — Cornell University

Phonon Bands in Silicon \
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Phonon Bands in Diamond
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Phonon frequencies are also expressed in units of equivalent

photon wavelength inverse:
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Phonon Bands in GaAs

GaAs has a FCC lattice with two basis
atoms in one primitive cell

=The number of phonon bands must be 6; two TA bands and one LA band for
acoustic phonons and two TO bands and one LO band for optical phonons

FBZ of GaAs

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University



Phonon Bands in GaAs
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Optical Phonons in Polar Crystals
Consider a crystal, like GaAs, made up of two different kind of atoms with a polar

covalent bond
_ ﬂ‘ n; . L
@r(R+dst) " dy(R+dy+ii,t)

When the atoms move, an oscillating charge dipole is created with a dipole moment
given by:

ﬁl(k,t)= f [az(k+a1 +ﬁl-,t)—ﬂ1(f(’+a1,t)]
The material polarization, or the dipole moment density, is then:
P(f"’ t)= g %’3}(’:"")= %f %:[‘72(’:"*'31 +ﬁj,t)—ﬂ1(f\’+31,t)]
where:

1
N =—— = Number of primitive cells per unit volume
3

Z = Number of nearest neighbors

A non-zero polarization means an electric field!
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Optical Phonons in Polar Crystals: D-Field and E-Field

A non-zero polarization means an electric field! up (l':\’ + Ry, t)
How do we find it? (B =
uz(R+n2,t) ‘ (ﬁ’ t)
The divergence of the D-field is zero inside the e
crystal: L
V.D=p, =0 uz(R+n3,t) ﬁz(k+ﬁ3,t)
But inside the crystal:
D =g(w)E+P
SvE=_YP
&(0)
Since:
Is(k,t)= % Zﬁj(k,t)= n?f Z[ﬁz(ﬁ’+31 +ﬁj,t)— l_j1(k+a1,t)]
J J
Therefore:
E(R’,t): —m —> We must also have:

&()

VxE(f(’,t)=0
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Optical Phonons in Polar Crystals: Dynamical Equations

Dynamical equations (assuming only nearest neighbor interactions):

M%LAZ§[[a2(f\»+a1+ﬁj,t)-a1(k+&1,t)].ﬁj]ﬁj—n;E'(R,t)
M%L_n;’z§[[az(k+az,t)—a1(k+&2—ﬁj,t)].ﬁj]ﬁ,-+n;2E(ﬁ’,t)
Suppose: B _
[ﬂ1ﬁ+31,t)}= ﬂ1(¢7)e"6"‘i1 oiti.R-iot E(—,t)=E(¢7)eiq'7_im
(R +dy,t)] | diy(g)e’%2 P(R,t)= P(g) "d-R-Tot
We have:
VxE(R,t)=0 = GxE(G)=0
We also have: L o
v.é(k,t)=—JJ‘7f(:)" = a@)--"0

The above two imply that the E-field has non-zero component only in the direction
parallel to g given by: L
E(= P(q)q -
E@g)--P@)4,
£(»)
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Optical Phonons in Polar Crystals: TO Phonons
Subtract the two equations and take the limit g~0 to get:
LN Lo LN N oA Ta f = .
- 0y (@)~ (@)= - - 2 3 (@) - @) 8] + - EG)
rJ

Transverse Optical Phonons:
Take the cross-product of both sides with § to get:

NN BN S
- @*[5(§)- (@) G =~ 7 =[ 62(9) -t @)]- 4]y <G+ - E(@)xd
r ] r
o1 - - = . ba - = - ~ . ﬁj ﬁj=b
—*[05(G) - 64(@)]x G = - ~[62(d)- dr(G)]x G P
P =(A.A;)A;x4)=bAxg
=w= bl For example in GaAs: ! o
M, E FA] Zhjh;
b o1 o1 /
=aro(q~0)= 5 | M=l f2= 51 100
r = |1 | 1] - =£0 10
[-1 (1] 30 0 1
P I P
SRNE ) 4T3 _4
-1 -1 3
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Optical Phonons in Polar Crystals: LO Phonons

Again start from:

-0 l02(@)- 0@~ 2l 02(@)-34(@)- 7,15 + - @)

r

Longitudinal Optical Phonons:
Take the dot-product of both sides with ¢ to get:

—wz[ﬂz(ﬁ)-ﬁ1(<7)]-¢?=—Mir§[[ﬂz(‘?)-lﬂ(ﬁ)]-ﬁj]ﬁj-6+MLrE'(ﬁ)¢7

L ogp oy v bap. o oo onafr o
o*[ty(q)-d4(q)ld = ", [42(q)-d1(9)l4 M,s(oo)[UZ(q) d1(9)}4
2 A:A:=b
= w,0(q~0)= ba  nf” %‘I J
M, = M, s() VR
nf? Z_‘,(A.nj an.q) =bA.q
2 ~0)— o2 ~0)= J
:>wLO(q ) wTO(q ) M,g(oo)
2 2 _ nf?
= OLo — @10 M,g(oo)
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Optical Phonons in Polar Crystals: Dielectric Constant

Consider the response of polar optical phonons to an externally applied E-field
The total electric field (external plus internal) is:

E(R t)= E(g) e/R-iat [ d~o0
We have:
—wZ[az(a)—a1(a)]=—iz,[[az(a)—a1(a>].ﬁ,-]ﬁ,-+Miré(a)
fE(q) ZAhjhj=
= [6(6)-5:@)] - - { ’
a’TO )
) " E()
= B(4) = nfldy(@)-ts(@)]=— "0
The D-field is: @ o

D(q) = &(=)E(@)+ P(d) = £(«)E(q)

:»o(q)—[s(oo> M]@@)
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Optical Phonons in Polar Crystals: Lydanne-Sachs-Teller Relation

We have: g(w) _ g(oo)_ nfz/M,
2 2
@ —adro
:>g(0)=£(oo) nf /M L?w freguency
a’To dielectric constant
2
nf 2 ! T A X K = T A L
2F=WO[3(O)_£(Q)] To Ll 1o
' B Lo v il i~
The LO-TO phonon frequency splitting was given by: E 7 “‘Q To
Es
2 e “NLA
nf £(0)— &l s \
= ofo - wfo = ofo [£(0)-o(co)] g1 9 8 E
Moe(0) " T e(w) 1 N "
2 £(0) ST R A
= wLo wro o -
&(«)
The above relationship is called the Lydanne-Sachs-Teller relation
The above relation does not change if more than nearest-neighbor interactions are
also included in the analysis
One can also write:

5(0) = 5(e0) - a’ro[g(o) 6‘(°°)]

o’ —wro

—
ECE 407 — Spring 2009 — Farhan Rana — Cornell University




Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching
component
Bond-bending

, :’/ component
7

« In general, atomic displacements can cause both
e bond-stretching and bond-bending

R

* Both bond-stretching and bond-bending give rise
to restoring forces

Bond-stretching contribution:

w P8R R+ o) (Rt )] ]

dt?
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Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching
component
Bond-bending

:// component
7

First find two mutually orthogonal unit vectors
that are also perpendicular to m

Let these be: 7y and A,

Bond-stretching and bond-bending contributions:
m udtm) o[ (R, + )Ry )] ]
+ B [[a(Ry +m,t)-a(Ry,t)]. Ay] Aq
+ B[ [a(Ry +m,t)-il(Ry,¢)). A,] A,
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Macroscopic Description of Acoustic Phonons in Solids

Acoustic phonons can also be described using a macroscopic formalism based on
the theory of elasticity

Let the local displacement of a solid from its equilibrium position be given by

the vector
/
uy(F)
i(7) = uy (F) -
u,(F) Q)
Strain Tensor: /
Consider a stretched rubber band: AL
—C Om
1 1 "I
6 L LI+AL X
There is a uniform strain given by:
o = duy(x) AL
>xT oex L
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Stress and Strain

Strain Tensor:

The strain tensor € is defined by its 6 components:

6ux(F) e 6uy(F) e 6uz(F)

exx = 6X yy = ay zz = az
e. = 6ux(f')+ 6uy(F) e _ = 6uy(F)+ auz(F) e.. = auz(F)_’_ 6ux(F)
o oy ox 2 oz dy > o oz

Stress Tensor:

Stress is the force acting per unit area on any plane of the solid

It is a tensor with 9 components (as shown) Y
y " X
V4
¥ Y,
For example, Xy is the force acting per unit area in Y, Xz .5(
the x-direction on a plane that has a normal vector 7 » X
pointing in the y-direction z =X
X
z

S—
ECE 407 - Spring 2009 - Farhan Rana - Cornell University




Hooke’s Law
Stress Tensor:
In solids with cubic symmetry, if the stress tensor produces no torque (and no
angular acceleration) then one must have:
Xy=YX Yz=Zy Z, =X,
So there are only 6 independent stress tensor components:

Xy Y, Z, Y, Z, X,

Hooke’s Law:

A fundamental theorem in the theory of elasticity is Hooke’s law that says that
strain is proportional to the stress and vice versa. Mathematically, the 6 stress
tensor components are related to the 6 strain tensor components by a matrix:

Xx| [e11 €12 €13 - . C6]|€xx
Y, Cx C2 - . . . |[ley
z, e - e [- .
Y, - €yz
ZX eZX
[ Xy] 61 €2 - - - Cesl|Cxy |

Elastic stiffness constants

—
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Hooke’s Law for Cubic Materials

In solids with cubic symmetry (SC, FCC, BCC) the matrix of elastic constants have
only three independent components:

Xx| [e11 €12 €2 0 0 0 ]fex
Yy| [€12 €1 €2 0 0 0 ||ey
Zz Ci2 Ci2 Cqq 0 0 0 ey,
Y,|7]0 0 0 cu 0 0]lle,
Z, 0 0 0 0 c4g O €,y
_Xy_ L 0 0 0 0 0 C44 | _exy_

Elastic energy:

The elastic energy per unit volume of a strained cubic material is:

V= el i et INCRERES
=5 C11\€%x +€)y + €% )+ Crale sy, + ey e, + e, )+ Cagley, + o5 + €5y
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Wave Equation for Acoustic Phonons in Cubic Solids

Consider a solid with density p
Consider a small volume of this solid that is in motion, as shown

We want to write Newton’s second law for its motion in the x-direction
First consider only the force due to the stress tensor component X,

2 —
pMAyAz%W:Ay AZ|:XX[f+%)?)—XX[

B%uy (F,t) _ X (F)
P o ox

Now add the contribution of all forces Xy(F -5 Y
acting in the x-direction:

S%u(F,t) _ oX,(F), X, (F)  ax,(F)
ot ox oy oz
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Wave Equation for Acoustic Phonons in Cubic Solids

We have: 2 - = R -
0 ux(r’t) - 6XX(I')+ 6Xy(l')+ 6Xz(r)
ot? ax oy oz
Similarly for acceleration in the y- and z-directions we get:
luy (,8) _ oY, (F), 0¥y (F) av,(F)  o%u,(7.0) _0Z,(F) ,02y(F) oz,(r)
ot? ox oy 0z ot ox oy oz

Using the Hooke’s law relation, the above equation for motion in the x-direction can
be written as:

Puy(Ft) aexx(F)Nu[aeyy(f)+ aezz(F)}HM{aexy(fLaezx(F)}

ot? " ox ox ox oy oz
d%u o%u, (F) o%u,(F o%u, (F) &%, (F
- ;2( Lc‘“{ a;z( . a;Z( )}(C“Jrc““){ oxoy * axza(z)

I_ Wave equation for acoustic phonons
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Wave Equation for Acoustic Phonons in Cubic Solids

2 —
o%uy(F,t) _ c

ot?

LA phonons:

oy? oz2 oxdy  ox oz

2. (7 2. (7 2. (7 82u. (r 2. (=
0 gxz(r)+c44{a uy(F), ux(r)}+(c12+c44){ uy (F) , 9%u,(F)
X

Consider a LA phonon wave propagating in the x-direction:

uy(F,t)= Ael IxXg it

Plug the assumed solution in the wave equation to get:

TA phonons:

o= |11 ity of = o1
= o qy —_ , velocity of wave = o

Consider a TA phonon wave propagating in the y-direction:

u (Ft)=Ae e ot

Plug the assumed solution in the wave equation to get:

C [
@ = f qy — Vvelocity of wave = %

—
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Acoustic Phonons in Silicon

r A X
In Silicon:
15.0 Lo /
spst T c11=1.66x10"" N/m?
N .
£ X C12 =0.64x10""  N/m?
> 100 11 2
g C4q =0.80x10"" N/m
[ L
=R p=2330 kg/m®
(3]
&L 50t TA
°X|
2.5
Results from elasticity theory

For LA phonons propagating in the I'-X direction:

velocity of wave = /% = 8.44 km/sec

For TA phonons propagating in the I'-X direction:

C
velocity of wave = % =5.86 km/sec

S—
ECE 407 - Spring 2009 - Farhan Rana - Cornell University

|

12



Wave Equation for Acoustic Phonons in Cubic Solids

ot? oy? 0z? oxdy  ox oz

02u, (F,t o%u,(F)  |o%u,(F) &%u,(F 2y (F) 8%u.(F
uy(r )=c11 g;§r)+c44l uy(r)+ uy(r) +(Ce +Ca 6ux(l’)+6 u,(r)

ot? oz* ox? oxdy  ozoy
Consider a phonon wave propagating in the direction: x +2y = g=q x\-/%y

0[] e

uy (7,)| =1, (@)

Plug the assumed solution in the wave equation to get two coupled equations:

R i el

—
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Wave Equation for Acoustic Phonons in Cubic Solids

q:(cﬂ +C44) ﬁ(cm +¢44) [, (q) u,(q)
q22 ( ) :2 ( ) |:u.V (6)i| - 2 |:uy (a)i|
2 C12+Cy4 2 C11+Cy4

The two solutions are as follows:

crgre a4l
Fa el

LA phonon:

=
TA phonon:
=

—
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2. (% 2. (7 2. (% 2. (7 82u. (r 2. (=
d ux(r,t)=c11a g;z(r)+°44{a ux(r)+a u"(r)}+(c12+c44){ uy(r)+a uz(r)]

|
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