Handout 19

Lattice Waves (Phonons) in 3D Crystals Group IV and Group III-V Semiconductors LO and TO Phonons in Polar Crystals and

Macroscopic Models of Acoustic Phonons in Solids

In this lecture you will learn:

- · Lattice waves (phonons) in 3D crystals
- Phonon bands in group IV and group III-V Semiconductors
- Macroscopic description of acoustic phonons from elasticity theory
- · Stress, strain, and Hooke's law

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Counting the Number of Phonon bands in 3D Crystals

Periodic boundary conditions for a lattice of $N_1 \times N_2 \times N_3$ primitive cells imply:

$$\begin{split} \vec{q} &= \alpha_1 \ \vec{b}_1 + \alpha_2 \ \vec{b}_2 + \alpha_3 \ \vec{b}_3 \\ \alpha_1 &= m_1/N_1 \quad \left\{ \text{ where } -N_1/2 < m_1 \le N_1/2 \\ \alpha_2 &= m_2/N_2 \quad \left\{ \text{ where } -N_2/2 < m_2 \le N_2/2 \\ \alpha_3 &= m_3/N_3 \quad \left\{ \text{ where } -N_3/2 < m_3 \le N_3/2 \right\} \end{split}$$

- \Rightarrow There are $N_1N_2N_3$ allowed wavevectors in the FBZ
- \Rightarrow There are $N_1N_2N_3$ phonon modes per phonon band

Counting degrees of freedom and the number of phonon bands: Monoatomic Basis

- There are $3N_1N_2N_3$ degrees of freedom corresponding to the motion in 3D of $N_1N_2N_3$ atoms
- ⇒The number of phonon bands must be 3 (two TA bands and one LA band)

Counting degrees of freedom and the number of phonon bands: Diatomic Basis

- There are $6N_1N_2N_3$ degrees of freedom corresponding to the motion in 3D of $2N_1N_2N_3$ atoms
- ⇒The number of phonon bands must be 6 (two TA bands and one LA band for acoustic phonons and two TO bands and one LO band for optical phonons)

Silicon has a FCC lattice with two basis atoms in one primitive cell

FBZ of Silicon

 \Rightarrow The number of phonon bands must be 6; two TA bands and one LA band for acoustic phonons and two TO bands and one LO band for optical phonons

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Optical Phonons in Polar Crystals

Consider a crystal, like GaAs, made up of two different kind of atoms with a polar covalent bond

$$\vec{u}_1(\vec{R}+\vec{d}_1,t) \xrightarrow{\vec{n}_j} \vec{u}_2(\vec{R}+\vec{d}_1+\vec{n}_j,t)$$

When the atoms move, an oscillating charge dipole is created with a dipole moment given by:

$$\vec{p}_{j}(\vec{R},t) = f\left[\vec{u}_{2}(\vec{R} + \vec{d}_{1} + \vec{n}_{j},t) - \vec{u}_{1}(\vec{R} + \vec{d}_{1},t)\right]$$

The material polarization, or the dipole moment density, is then:

$$\vec{P}(\vec{R},t) = \frac{n}{Z} \sum_{j} \vec{p}_{j}(\vec{R},t) = \frac{nf}{Z} \sum_{j} \left[\vec{u}_{2}(\vec{R} + \vec{d}_{1} + \vec{n}_{j},t) - \vec{u}_{1}(\vec{R} + \vec{d}_{1},t) \right]$$

where:

 $n = \frac{1}{\Omega_3}$ = Number of primitive cells per unit volume

Z = Number of nearest neighbors

A non-zero polarization means an electric field!

Optical Phonons in Polar Crystals: D-Field and E-Field

A non-zero polarization means an electric field! How do we find it?

 $\vec{u}_{2}(\vec{R} + \vec{n}_{2}, t)$ $\vec{u}_{1}(\vec{R}, t)$ $\vec{u}_{2}(\vec{R} + \vec{n}_{3}, t)$ $\vec{u}_{2}(\vec{R} + \vec{n}_{3}, t)$

The divergence of the D-field is zero inside the crystal:

$$\nabla . \vec{D} = \rho_u = 0$$

But inside the crystal:

$$\vec{D} = \varepsilon(\infty)\vec{E} + \vec{P}$$

$$\Rightarrow \nabla \cdot \vec{E} = -\frac{\nabla \cdot \vec{P}}{\varepsilon(\infty)}$$

Since:

$$\vec{P}(\vec{R},t) = \frac{n}{Z} \sum_{j} \vec{p}_{j} (\vec{R},t) = \frac{nf}{Z} \sum_{j} \left[\vec{u}_{2} (\vec{R} + \vec{d}_{1} + \vec{n}_{j},t) - \vec{u}_{1} (\vec{R} + \vec{d}_{1},t) \right]$$

Therefore:

$$\nabla . \vec{E}(\vec{R}, t) = -\frac{\nabla . \vec{P}(\vec{R}, t)}{\varepsilon(\infty)}$$
 We must also have:
$$\nabla \times \vec{E}(\vec{R}, t) = 0$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Optical Phonons in Polar Crystals: Dynamical Equations

Dynamical equations (assuming only nearest neighbor interactions):

$$\frac{d^{2}\bar{u}_{1}(\vec{R}+\vec{d}_{1},t)}{dt^{2}} = \frac{\alpha}{M_{1}} \sum_{j} \left[\bar{u}_{2}(\vec{R}+\vec{d}_{1}+\vec{n}_{j},t) - \bar{u}_{1}(\vec{R}+\vec{d}_{1},t) \right] \cdot \hat{n}_{j} \right] \hat{n}_{j} - \frac{f}{M_{1}} \vec{E}(\vec{R},t)$$

$$\frac{d^{2}\bar{u}_{2}(\vec{R}+\vec{d}_{2},t)}{dt^{2}} = -\frac{\alpha}{M_{2}} \sum_{j} \left[\bar{u}_{2}(\vec{R}+\vec{d}_{2},t) - \bar{u}_{1}(\vec{R}+\vec{d}_{2}-\vec{n}_{j},t) \right] \cdot \hat{n}_{j} \right] \hat{n}_{j} + \frac{f}{M_{2}} \vec{E}(\vec{R},t)$$

Suppose:

$$\begin{bmatrix} \bar{u}_1(\vec{R} + \bar{d}_1, t) \\ \bar{u}_2(\vec{R} + \bar{d}_2, t) \end{bmatrix} = \begin{bmatrix} \bar{u}_1(\vec{q}) e^{i\vec{q} \cdot \bar{d}_1} \\ \bar{u}_2(\vec{q}) e^{i\vec{q} \cdot \bar{d}_2} \end{bmatrix} e^{i\vec{q} \cdot \bar{R} - i\omega t} \qquad \begin{array}{c} \bar{E}(\vec{R}, t) = \bar{E}(\vec{q}) e^{i\vec{q} \cdot \bar{R} - i\omega t} \\ \bar{P}(\vec{R}, t) = \bar{P}(\vec{q}) e^{i\vec{q} \cdot \bar{R} - i\omega t} \end{array}$$

We have:

$$\nabla \times \vec{E}(\vec{R},t) = 0 \implies \vec{q} \times \vec{E}(\vec{q}) = 0$$

We also have:

$$\nabla . \vec{E}(\vec{R}, t) = -\frac{\nabla . \vec{P}(\vec{R}, t)}{\varepsilon(\infty)} \quad \Rightarrow \quad \hat{q} . \vec{E}(\vec{q}) = -\frac{\vec{P}(\vec{q}) . \hat{q}}{\varepsilon(\infty)}$$

The above two imply that the E-field has non-zero component only in the direction parallel to \vec{q} given by:

 $\vec{E}(\vec{q}) = -\frac{\vec{P}(\vec{q}).\hat{q}}{\varepsilon(\infty)}\hat{q}$

Optical Phonons in Polar Crystals: TO Phonons

Subtract the two equations and take the limit $q \approx 0$ to get:

$$-\omega^{2}[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q})] = -\frac{\alpha}{M_{r}} \sum_{i} [[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q})] \cdot \hat{n}_{j}] \hat{n}_{j} + \frac{f}{M_{r}} \bar{E}(\bar{q})$$

Transverse Optical Phonons:

Take the cross-product of both sides with \hat{q} to get:

$$-\omega^{2}[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q})] \times \hat{q} = -\frac{\alpha}{M_{r}} \sum_{j} \left[\left[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q}) \right] \cdot \hat{n}_{j} \right] \hat{n}_{j} \times \hat{q} + \frac{f}{M_{r}} \bar{E}(\bar{q}) \times \hat{q}$$

$$-\omega^{2}[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q})] \times \hat{q} = -\frac{b\alpha}{M_{r}} \left[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q}) \right] \times \hat{q}$$

$$\Rightarrow \omega = \sqrt{\frac{b\alpha}{M_{r}}}$$

$$\Rightarrow \omega = \sqrt{\frac{b\alpha}{M_{r}}}$$
For example in GaAs:
$$\vec{n}_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \quad \vec{n}_{2} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$

$$\vec{n}_{3} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix} \quad \vec{n}_{4} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$$

$$= \frac{4}{3}$$

$$= \frac{4}{3}$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Optical Phonons in Polar Crystals: LO Phonons

Again start from:

$$-\omega^{2}[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q})] = -\frac{\alpha}{M_{r}} \sum_{i} [[\bar{u}_{2}(\bar{q}) - \bar{u}_{1}(\bar{q})]. \hat{n}_{j}] \hat{n}_{j} + \frac{f}{M_{r}} \bar{E}(\bar{q})$$

Longitudinal Optical Phonons:

Take the dot-product of both sides with \hat{q} to get:

$$\begin{split} &-\omega^2\big[\bar{u}_2(\bar{q}) - \bar{u}_1(\bar{q})\big]\hat{q} = -\frac{\alpha}{M_r}\sum_j\big[\big[\;\bar{u}_2(\bar{q}) - \bar{u}_1(\bar{q})\big].\;\hat{n}_j\big]\hat{n}_j.\hat{q} + \frac{f}{M_r}\;\bar{E}(\bar{q}).\hat{q} \\ &-\omega^2\big[\bar{u}_2(\bar{q}) - \bar{u}_1(\bar{q})\big]\hat{q} = -\frac{b\alpha}{M_r}\big[\bar{u}_2(\bar{q}) - \bar{u}_1(\bar{q})\big]\hat{q} - \frac{nf^2}{M_r\varepsilon(\infty)}\big[\bar{u}_2(\bar{q}) - \bar{u}_1(\bar{q})\big]\hat{q} \\ &\Rightarrow \omega_{LO}(q\approx 0) = \sqrt{\frac{b\alpha}{M_r} + \frac{nf^2}{M_r\varepsilon(\infty)}} \\ &\Rightarrow \omega_{LO}^2(q\approx 0) - \omega_{TO}^2(q\approx 0) = \frac{nf^2}{M_r\varepsilon(\infty)} \end{split}$$

$$\Rightarrow \omega_{LO}^2(q\approx 0) - \omega_{TO}^2(q\approx 0) = \frac{nf^2}{M_r\varepsilon(\infty)}$$

$$\Rightarrow \omega_{LO}^2(q\approx 0) - \omega_{TO}^2(q\approx 0) = \frac{nf^2}{M_r\varepsilon(\infty)}$$

Optical Phonons in Polar Crystals: Dielectric Constant

Consider the response of polar optical phonons to an externally applied E-field The total electric field (external plus internal) is:

$$\vec{E}(\vec{R},t) = \vec{E}(\vec{q}) e^{i\vec{q}.\vec{R}-i\omega t}$$
 $\vec{q} \approx 0$

We have:

$$-\omega^{2}[\vec{u}_{2}(\vec{q}) - \vec{u}_{1}(\vec{q})] = -\frac{\alpha}{M_{r}} \sum_{j} \left[\left[\vec{u}_{2}(\vec{q}) - \vec{u}_{1}(\vec{q}) \right] \cdot \hat{n}_{j} \right] \hat{n}_{j} + \frac{f}{M_{r}} \vec{E}(\vec{q})$$

$$\Rightarrow \left[\vec{u}_2(\vec{q}) - \vec{u}_1(\vec{q}) \right] = -\frac{\frac{r}{M_r} E(\vec{q})}{\omega^2 - \omega_{TO}^2}$$

$$\Rightarrow [\bar{u}_2(\vec{q}) - \bar{u}_1(\vec{q})] = -\frac{\frac{f}{M_r} \vec{E}(\vec{q})}{\omega^2 - \omega_{TO}^2}$$

$$\Rightarrow [\bar{v}_2(\vec{q}) - \bar{v}_1(\vec{q})] = -\frac{\frac{f}{M_r} \vec{E}(\vec{q})}{\omega^2 - \omega_{TO}^2}$$

$$\Rightarrow \vec{P}(\vec{q}) = nf[\bar{u}_2(\vec{q}) - \bar{u}_1(\vec{q})] = -\frac{\frac{nf^2}{M_r} \vec{E}(\vec{q})}{\omega^2 - \omega_{TO}^2}$$
and since

$$\Rightarrow \vec{P}(\vec{q}) = nf[\vec{u}_2(\vec{q}) - \vec{u}_1(\vec{q})] = -\frac{M_r}{\omega^2 - \omega_{TO}^2}$$

The D-field is:

$$\vec{D}(\vec{q}) = \varepsilon(\infty)\vec{E}(\vec{q}) + \vec{P}(\vec{q}) = \varepsilon(\omega)\vec{E}(\vec{q})$$

$$\Rightarrow D(\vec{q}) = \left(\varepsilon(\infty) - \frac{nf^2/M_r}{\omega^2 - \omega_{TO}^2}\right)\vec{E}(\vec{q})$$

$$\Rightarrow \varepsilon(\omega) = \varepsilon(\infty) - \frac{nf^2/M_r}{\omega^2 - \omega_{TO}^2}$$

Optical Phonons in Polar Crystals: Lydanne-Sachs-Teller Relation

$$\varepsilon(\omega) = \varepsilon(\infty) - \frac{nf^2/M_r}{\omega^2 - \omega_{TO}^2}$$

$$\Rightarrow \varepsilon(0) = \varepsilon(\infty) + \frac{nf^2/M_r}{\omega_{TO}^2} \longrightarrow \begin{array}{c} \text{Low frequency dielectric constant} \end{array}$$

$$\Rightarrow \frac{nf^2}{M_r} = \omega_{TO}^2 \big[\varepsilon(0) - \varepsilon(\infty) \big]$$

The LO-TO phonon frequency splitting was given by:

$$\begin{split} &\Rightarrow \omega_{LO}^2 - \omega_{TO}^2 = \frac{nf^2}{M_r \varepsilon(\infty)} = \omega_{TO}^2 \frac{\left[\varepsilon(0) - \varepsilon(\infty)\right]}{\varepsilon(\infty)} \\ &\Rightarrow \omega_{LO}^2 = \omega_{TO}^2 \frac{\varepsilon(0)}{\varepsilon(\infty)} \end{split}$$

The above relationship is called the Lydanne-Sachs-Teller relation

The above relation does not change if more than nearest-neighbor interactions are also included in the analysis

One can also write:

$$\varepsilon(\omega) = \varepsilon(\infty) - \frac{\omega_{TO}^2 [\varepsilon(0) - \varepsilon(\infty)]}{\omega^2 - \omega_{TO}^2}$$

Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching component \(\)

Bond-bending component

- In general, atomic displacements can cause both bond-stretching and bond-bending
- Both bond-stretching and bond-bending give rise to restoring forces

Bond-stretching contribution:

$$M\frac{d^2\bar{u}(\vec{R}_1,t)}{dt^2} = \alpha \left[\left[\bar{u}(\vec{R}_1 + \bar{m},t) - \bar{u}(\vec{R}_1,t) \right] . \hat{m} \right] \hat{m}$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Vector Dynamical Equations: Bond-Stretching and Bond-Bending

Bond-stretching component

Bond-bending component

First find two mutually orthogonal unit vectors that are also perpendicular to $\hat{\boldsymbol{m}}$

Let these be: \vec{n}_1 and \hat{n}_2

Bond-stretching and bond-bending contributions:

$$M \frac{d^{2} \bar{u}(\vec{R}_{1}, t)}{dt^{2}} = \alpha \left[\bar{u}(\vec{R}_{1} + \vec{m}, t) - \bar{u}(\vec{R}_{1}, t) \right] \cdot \hat{m} \hat{m}$$

$$+ \beta \left[\left[\bar{u}(\vec{R}_{1} + \vec{m}, t) - \bar{u}(\vec{R}_{1}, t) \right] \cdot \hat{n}_{1} \right] \hat{n}_{1}$$

$$+ \beta \left[\left[\bar{u}(\vec{R}_{1} + \vec{m}, t) - \bar{u}(\vec{R}_{1}, t) \right] \cdot \hat{n}_{2} \right] \hat{n}_{2}$$

Macroscopic Description of Acoustic Phonons in Solids

Acoustic phonons can also be described using a macroscopic formalism based on the theory of elasticity

Let the local displacement of a solid from its equilibrium position be given by

$$\vec{u}(\vec{r}) = \begin{bmatrix} u_x(\vec{r}) \\ u_y(\vec{r}) \\ u_z(\vec{r}) \end{bmatrix}$$

Strain Tensor:

Consider a stretched rubber band:

There is a uniform strain given by:

$$\mathbf{e}_{xx} = \frac{\partial u_x(x)}{\partial x} = \frac{\Delta L}{L}$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Stress and Strain

Strain Tensor:

The strain tensor $\overline{\overline{\mathbf{e}}}$ is defined by its 6 components:

$$\begin{split} \mathbf{e}_{xx} &= \frac{\partial u_{x}(\bar{r})}{\partial x} \quad \mathbf{e}_{yy} = \frac{\partial u_{y}(\bar{r})}{\partial y} \quad \mathbf{e}_{zz} = \frac{\partial u_{z}(\bar{r})}{\partial z} \\ \mathbf{e}_{xy} &= \frac{\partial u_{x}(\bar{r})}{\partial y} + \frac{\partial u_{y}(\bar{r})}{\partial x} \quad \mathbf{e}_{yz} = \frac{\partial u_{y}(\bar{r})}{\partial z} + \frac{\partial u_{z}(\bar{r})}{\partial y} \quad \mathbf{e}_{zx} = \frac{\partial u_{z}(\bar{r})}{\partial x} + \frac{\partial u_{x}(\bar{r})}{\partial z} \end{split}$$

Stress Tensor:

Stress is the force acting per unit area on any plane of the solid It is a tensor with 9 components (as shown)

For example, $\boldsymbol{X}_{\boldsymbol{y}}$ is the force acting per unit area in the x-direction on a plane that has a normal vector pointing in the y-direction

Hooke's Law

Stress Tensor:

In solids with cubic symmetry, if the stress tensor produces no torque (and no angular acceleration) then one must have:

$$X_v = Y_x$$
 $Y_z = Z_v$ $Z_x = X_z$

 $X_y = Y_x \qquad Y_z = Z_y \qquad Z_x = X_z$ So there are only 6 independent stress tensor components:

$$X_x$$
 Y_y Z_z Y_z Z_x X_y

Hooke's Law:

A fundamental theorem in the theory of elasticity is Hooke's law that says that strain is proportional to the stress and vice versa. Mathematically, the 6 stress tensor components are related to the 6 strain tensor components by a matrix:

$$\begin{bmatrix} X_x \\ Y_y \\ Z_z \\ Y_z \\ Z_x \\ X_y \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{16} \\ c_{21} & c_{22} & \dots & \dots & \dots \\ c_{31} & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \dots & \dots & \dots \\ c_{61} & c_{62} & \dots & \dots & c_{66} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ e_{zz} \\ e_{yz} \\ e_{zx} \\ e_{xy} \end{bmatrix}$$

Elastic stiffness constants

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Hooke's Law for Cubic Materials

In solids with cubic symmetry (SC, FCC, BCC) the matrix of elastic constants have only three independent components:

$$\begin{bmatrix} X_x \\ Y_y \\ Z_z \\ Y_z \\ Z_x \\ X_y \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{44} \end{bmatrix} \begin{bmatrix} e_{xx} \\ e_{yy} \\ e_{zz} \\ e_{yz} \\ e_{zx} \\ e_{xy} \end{bmatrix}$$

Elastic energy:

The elastic energy per unit volume of a strained cubic material is:

$$V = \frac{1}{2}c_{11}\Big(e_{xx}^2 + e_{yy}^2 + e_{zz}^2\Big) + c_{12}\Big(e_{xx}e_{yy} + e_{yy}e_{zz} + e_{zz}e_{xx}\Big) + c_{44}\Big(e_{yz}^2 + e_{zx}^2 + e_{xy}^2\Big)$$

Wave Equation for Acoustic Phonons in Cubic Solids

Consider a solid with density ho

Consider a small volume of this solid that is in motion, as shown

We want to write Newton's second law for its motion in the x-direction First consider only the force due to the stress tensor component X_{y}

$$\rho \Delta x \Delta y \Delta z \frac{\partial^2 u_x(\bar{r},t)}{\partial t^2} = \Delta y \Delta z \left[X_x \left(\bar{r} + \frac{\Delta x}{2} \hat{x} \right) - X_x \left(\bar{r} - \frac{\Delta x}{2} \hat{x} \right) \right] = \Delta x \Delta y \Delta z \frac{\partial X_x(\bar{r})}{\partial x}$$

$$\Rightarrow \rho \frac{\partial^2 u_x(\bar{r},t)}{\partial t^2} = \frac{\partial X_x(\bar{r})}{\partial x}$$

Now add the contribution of all forces acting in the x-direction:

$$X_y \left(\vec{r} - \frac{\Delta y}{2} \hat{y}\right)^{\Delta x}$$

$$\rho \frac{\partial^2 u_x(\bar{r},t)}{\partial t^2} = \frac{\partial X_x(\bar{r})}{\partial x} + \frac{\partial X_y(\bar{r})}{\partial y} + \frac{\partial X_z(\bar{r})}{\partial z}$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Wave Equation for Acoustic Phonons in Cubic Solids

We have:

$$\rho \frac{\partial^2 u_x(\vec{r},t)}{\partial t^2} = \frac{\partial X_x(\vec{r})}{\partial x} + \frac{\partial X_y(\vec{r})}{\partial y} + \frac{\partial X_z(\vec{r})}{\partial z}$$

Similarly for acceleration in the y- and z-directions we get:

$$\rho \frac{\partial^2 u_y(\bar{r},t)}{\partial t^2} = \frac{\partial Y_x(\bar{r})}{\partial x} + \frac{\partial Y_y(\bar{r})}{\partial y} + \frac{\partial Y_z(\bar{r})}{\partial z} \qquad \rho \frac{\partial^2 u_z(\bar{r},t)}{\partial t^2} = \frac{\partial Z_x(\bar{r})}{\partial x} + \frac{\partial Z_y(\bar{r})}{\partial y} + \frac{\partial Z_z(\bar{r})}{\partial z}$$

Using the Hooke's law relation, the above equation for motion in the x-direction can be written as:

$$\begin{split} \rho \; & \frac{\partial^2 u_x(\bar{r},t)}{\partial t^2} = c_{11} \frac{\partial e_{xx}(\bar{r})}{\partial x} + c_{12} \bigg[\frac{\partial e_{yy}(\bar{r})}{\partial x} + \frac{\partial e_{zz}(\bar{r})}{\partial x} \bigg] + c_{44} \bigg[\frac{\partial e_{xy}(\bar{r})}{\partial y} + \frac{\partial e_{zx}(\bar{r})}{\partial z} \bigg] \\ & = c_{11} \frac{\partial^2 u_x(\bar{r})}{\partial x^2} + c_{44} \bigg[\frac{\partial^2 u_x(\bar{r})}{\partial y^2} + \frac{\partial^2 u_x(\bar{r})}{\partial z^2} \bigg] + \left(c_{12} + c_{44} \right) \bigg[\frac{\partial^2 u_y(\bar{r})}{\partial x \; \partial y} + \frac{\partial^2 u_z(\bar{r})}{\partial x \; \partial z} \bigg] \end{split}$$

Wave equation for acoustic phonons

Wave Equation for Acoustic Phonons in Cubic Solids

$$\rho \frac{\partial^2 u_x(\bar{r},t)}{\partial t^2} = c_{11} \frac{\partial^2 u_x(\bar{r})}{\partial x^2} + c_{44} \left[\frac{\partial^2 u_x(\bar{r})}{\partial y^2} + \frac{\partial^2 u_x(\bar{r})}{\partial z^2} \right] + \left(c_{12} + c_{44} \right) \left[\frac{\partial^2 u_y(\bar{r})}{\partial x \partial y} + \frac{\partial^2 u_z(\bar{r})}{\partial x \partial z} \right]$$

LA phonons:

Consider a LA phonon wave propagating in the x-direction:

$$u_x(\vec{r},t) = A e^{i q_x x} e^{-i \omega t}$$

Plug the assumed solution in the wave equation to get:

$$\omega = \sqrt{\frac{c_{11}}{\rho}} q_x$$
 velocity of wave = $\sqrt{\frac{c_{11}}{\rho}}$

TA phonons:

Consider a TA phonon wave propagating in the y-direction:

$$u_x(\vec{r},t) = A e^{i q_y y} e^{-i \omega t}$$

Plug the assumed solution in the wave equation to get:

$$\omega = \sqrt{\frac{c_{44}}{\rho}} q_y$$
 velocity of wave = $\sqrt{\frac{c_{44}}{\rho}}$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Acoustic Phonons in Silicon

In Silicon:

$$c_{11} = 1.66 \times 10^{11}$$
 N/m²
 $c_{12} = 0.64 \times 10^{11}$ N/m²
 $c_{44} = 0.80 \times 10^{11}$ N/m²
 $\rho = 2330$ kg/m³

- Results from elasticity theory

For LA phonons propagating in the Γ -X direction:

velocity of wave =
$$\sqrt{\frac{c_{11}}{\rho}}$$
 = 8.44 km/sec

For TA phonons propagating in the Γ -X direction:

velocity of wave =
$$\sqrt{\frac{c_{44}}{\rho}}$$
 = 5.86 km/sec

Wave Equation for Acoustic Phonons in Cubic Solids

$$\rho \frac{\partial^{2} u_{x}(\vec{r},t)}{\partial t^{2}} = c_{11} \frac{\partial^{2} u_{x}(\vec{r})}{\partial x^{2}} + c_{44} \left[\frac{\partial^{2} u_{x}(\vec{r})}{\partial y^{2}} + \frac{\partial^{2} u_{x}(\vec{r})}{\partial z^{2}} \right] + \left(c_{12} + c_{44} \right) \left[\frac{\partial^{2} u_{y}(\vec{r})}{\partial x \partial y} + \frac{\partial^{2} u_{z}(\vec{r})}{\partial x \partial z} \right]$$

$$\rho \frac{\partial^{2} u_{y}(\bar{r},t)}{\partial t^{2}} = c_{11} \frac{\partial^{2} u_{y}(\bar{r})}{\partial y^{2}} + c_{44} \left[\frac{\partial^{2} u_{y}(\bar{r})}{\partial z^{2}} + \frac{\partial^{2} u_{y}(\bar{r})}{\partial x^{2}} \right] + \left(c_{12} + c_{44} \right) \left[\frac{\partial^{2} u_{x}(\bar{r})}{\partial x \partial y} + \frac{\partial^{2} u_{z}(\bar{r})}{\partial z \partial y} \right]$$

Consider a phonon wave propagating in the direction: $\frac{\hat{x} + \hat{y}}{\sqrt{2}}$ \Rightarrow $\vec{q} = q \frac{\hat{x} + \hat{y}}{\sqrt{2}}$

$$\begin{bmatrix} u_x(\vec{r},t) \\ u_y(\vec{r},t) \end{bmatrix} = \begin{bmatrix} u_x(\vec{q}) \\ u_y(\vec{q}) \end{bmatrix} e^{i \vec{q} \cdot \vec{r}} e^{-i \omega t}$$

Plug the assumed solution in the wave equation to get two coupled equations:

$$\begin{bmatrix} \frac{q^2}{2}(c_{11}+c_{44}) & \frac{q^2}{2}(c_{12}+c_{44}) \\ \frac{q^2}{2}(c_{12}+c_{44}) & \frac{q^2}{2}(c_{11}+c_{44}) \end{bmatrix} \begin{bmatrix} u_x(\bar{q}) \\ u_y(\bar{q}) \end{bmatrix} = \rho \ \omega^2 \begin{bmatrix} u_x(\bar{q}) \\ u_y(\bar{q}) \end{bmatrix}$$

ECE 407 - Spring 2009 - Farhan Rana - Cornell University

Wave Equation for Acoustic Phonons in Cubic Solids

$$\begin{bmatrix} \frac{q^2}{2}(c_{11}+c_{44}) & \frac{q^2}{2}(c_{12}+c_{44}) \\ \frac{q^2}{2}(c_{12}+c_{44}) & \frac{q^2}{2}(c_{11}+c_{44}) \end{bmatrix} \begin{bmatrix} u_x(\vec{q}) \\ u_y(\vec{q}) \end{bmatrix} = \rho \ \omega^2 \begin{bmatrix} u_x(\vec{q}) \\ u_y(\vec{q}) \end{bmatrix}$$

The two solutions are as follows:

LA phonon:

$$\omega = \sqrt{\frac{c_{11} + c_{12} + 2c_{44}}{2\rho}} q \qquad \begin{bmatrix} u_x(\vec{q}) \\ u_y(\vec{q}) \end{bmatrix} = A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

TA phonon:

$$\omega = \sqrt{\frac{c_{11} - c_{12}}{2\rho}} q \qquad \begin{bmatrix} u_x(\vec{q}) \\ u_y(\vec{q}) \end{bmatrix} = A \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$